Compare commits
304 Commits
work-close
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3aadda6fb3 | ||
|
|
159b71e51e | ||
|
|
718be7c6a3 | ||
|
|
eb7bdf18ad | ||
|
|
fe44dd8baa | ||
|
|
ae010215e7 | ||
|
|
eec81683eb | ||
|
|
1965298ab0 | ||
|
|
9a1ac45d19 | ||
|
|
b817848567 | ||
|
|
3a11645afe | ||
|
|
7ed7791723 | ||
|
|
3b68769ea5 | ||
|
|
2ddfa32dd8 | ||
|
|
371647109f | ||
|
|
91b5e8e942 | ||
|
|
d34d3b05b8 | ||
|
|
78462cff4c | ||
|
|
edbfc6f856 | ||
|
|
d6d8587289 | ||
|
|
2919f37343 | ||
|
|
dd4cc8eb4c | ||
|
|
c520bf981d | ||
|
|
c454e88d9a | ||
|
|
b5e573957c | ||
|
|
6d59279438 | ||
|
|
1d569a6631 | ||
|
|
7b25d1c06f | ||
|
|
864c78f24a | ||
|
|
c09ca4cf5a | ||
|
|
6f685e9e01 | ||
|
|
128226fe8a | ||
|
|
5cbe7d83e8 | ||
|
|
9399e738bc | ||
|
|
126275d1f4 | ||
|
|
f8da8099d5 | ||
|
|
bcd4510958 | ||
|
|
3ef760c18f | ||
|
|
cfc58d3ce7 | ||
|
|
5eb07966b5 | ||
|
|
e1ba7c17ce | ||
|
|
0df40b43e8 | ||
|
|
17ce45d212 | ||
|
|
39d01158ba | ||
|
|
73c6674306 | ||
|
|
c78dd6a00a | ||
|
|
d5c031bc13 | ||
|
|
2cbb895978 | ||
|
|
e1176e4dfb | ||
|
|
6773ab074b | ||
|
|
4a567c8d10 | ||
|
|
60879fd298 | ||
|
|
ef4c76fe94 | ||
|
|
116b304541 | ||
|
|
3219712c17 | ||
|
|
b761b8c654 | ||
|
|
a209d4db5b | ||
|
|
354b1e666b | ||
|
|
4691243179 | ||
|
|
4e4a5c6336 | ||
|
|
9323a5dfe2 | ||
|
|
b724b3a348 | ||
|
|
317f8c94c8 | ||
|
|
9c0d0f6a72 | ||
|
|
5923a2e3a1 | ||
|
|
8d67e1a4e9 | ||
|
|
33bd67f9b7 | ||
|
|
993cec0891 | ||
|
|
697c6e8d28 | ||
|
|
2585accfeb | ||
|
|
37ddab223f | ||
|
|
119d007058 | ||
|
|
1931b11001 | ||
|
|
c01e6eee1d | ||
|
|
42fbf8256f | ||
|
|
9346ad1914 | ||
|
|
0e52f03b5b | ||
|
|
f54b7b9376 | ||
|
|
5666b88c69 | ||
|
|
889be5b275 | ||
|
|
607d0b4237 | ||
|
|
d120a313b7 | ||
|
|
4d4b9684a5 | ||
|
|
14cbb8dd2d | ||
|
|
aa3388cc59 | ||
|
|
d6902240dd | ||
|
|
105ce35e1b | ||
|
|
c0ca4c5cc7 | ||
|
|
cfa48fe39f | ||
|
|
2dd73d0431 | ||
|
|
d25602e88d | ||
|
|
1f3b4cc749 | ||
|
|
8e58f8fb39 | ||
|
|
f4130aa948 | ||
|
|
de182b1d14 | ||
|
|
f5956b5395 | ||
|
|
8d7e487149 | ||
|
|
eb43b20e3b | ||
|
|
388fe1b23f | ||
|
|
f6d878a898 | ||
|
|
b3e894f241 | ||
|
|
3dbac01e1d | ||
|
|
69507a0354 | ||
|
|
42c9031c81 | ||
|
|
cb0c38f7d8 | ||
|
|
0181023954 | ||
|
|
07b3726d31 | ||
|
|
28a4baf95c | ||
|
|
14685bf77f | ||
|
|
b1011e3fb1 | ||
|
|
17b8ce4c6b | ||
|
|
9090377bbc | ||
|
|
2d4589949c | ||
|
|
8c01be8c75 | ||
|
|
3a015cd00d | ||
|
|
841a9ca2f7 | ||
|
|
fe9eff8ce3 | ||
|
|
82f540bb73 | ||
|
|
ed36041b67 | ||
|
|
1af219fad6 | ||
|
|
6c1d5d912a | ||
|
|
ee0bc3d697 | ||
|
|
64e01f03a2 | ||
|
|
7201f41664 | ||
|
|
d40fd2190d | ||
|
|
4c21e1d00f | ||
|
|
2082300309 | ||
|
|
53acdfd0a5 | ||
|
|
a537ae0ceb | ||
|
|
307c03e480 | ||
|
|
64d6f110a9 | ||
|
|
447908ce0c | ||
|
|
bb281834b0 | ||
|
|
9dbfc76d9d | ||
|
|
ae536b4786 | ||
|
|
8928c394cf | ||
|
|
01422da951 | ||
|
|
f06eeb5c7a | ||
|
|
ca83c13f37 | ||
|
|
8627c94d6a | ||
|
|
6f87a4e685 | ||
|
|
b5aea5b774 | ||
|
|
fd55dd9e9d | ||
|
|
885f63cff0 | ||
|
|
efabe63357 | ||
|
|
1dc9aa8e19 | ||
|
|
9aba1a8536 | ||
|
|
81277154d2 | ||
|
|
d444289111 | ||
|
|
89ffbbed4c | ||
|
|
cc6736c3e3 | ||
|
|
1cc6398074 | ||
|
|
1e045e8ee0 | ||
|
|
f7e33df99d | ||
|
|
4504c0333f | ||
|
|
554ae78d8c | ||
|
|
ee79d0e307 | ||
|
|
7b697105b3 | ||
|
|
3cf8899a5a | ||
|
|
b7c243db19 | ||
|
|
5b2f8104c7 | ||
|
|
cf3bedfbdc | ||
|
|
7f4f696f10 | ||
|
|
9c37a918db | ||
|
|
f2b68fef73 | ||
|
|
c352617c30 | ||
|
|
5d1f773ffb | ||
|
|
da8e0a6e50 | ||
|
|
42faa962fc | ||
|
|
0f94f6c8e3 | ||
|
|
c917bd893d | ||
|
|
d57bc253c5 | ||
|
|
0dce120a20 | ||
|
|
ab61b0a435 | ||
|
|
cc919a5f8d | ||
|
|
8e107b2280 | ||
|
|
f1e0730701 | ||
|
|
2e82fc4790 | ||
|
|
bfda326c24 | ||
|
|
f2b27d17b7 | ||
|
|
5001983d34 | ||
|
|
73e27aee4f | ||
|
|
0d27195fd4 | ||
|
|
1f5783a250 | ||
|
|
37952e8686 | ||
|
|
ab9b9e8584 | ||
|
|
3fb1191cad | ||
|
|
f3a1c914a4 | ||
|
|
b2e36e5d98 | ||
|
|
ff0ffedd17 | ||
|
|
1e87d26707 | ||
|
|
f8de9ae080 | ||
|
|
6a87c5e9f5 | ||
|
|
db7a9cf071 | ||
|
|
765de72f9e | ||
|
|
6202a0f3bc | ||
|
|
413ff19ea8 | ||
|
|
4e7fcc2704 | ||
|
|
871637d3f2 | ||
|
|
0fbcc156c5 | ||
|
|
56d3f4e64c | ||
|
|
cb6828ec34 | ||
|
|
3656006a30 | ||
|
|
7a9b06ad86 | ||
|
|
acd96047de | ||
|
|
516ef1d361 | ||
|
|
b9757c9b69 | ||
|
|
a9b04e8536 | ||
|
|
841adcfff7 | ||
|
|
8ab12c86bf | ||
|
|
abc76ee963 | ||
|
|
b826844b34 | ||
|
|
017371b744 | ||
|
|
4aa2250221 | ||
|
|
49d9ed22bf | ||
|
|
51311948be | ||
|
|
61bbd455cf | ||
|
|
d93645a750 | ||
|
|
8c67adc164 | ||
|
|
04e7eb20fd | ||
|
|
868760f5b1 | ||
|
|
b0fa36e221 | ||
|
|
6356e3d35c | ||
|
|
6e9b5b309c | ||
|
|
d98abfc5db | ||
|
|
c3c64adc32 | ||
|
|
efc2d9b364 | ||
|
|
d96bb6ca82 | ||
|
|
8087200ffe | ||
|
|
61c0c8d2ef | ||
|
|
ce7657e537 | ||
|
|
037377b927 | ||
|
|
5493bdfb48 | ||
|
|
4b9cb36247 | ||
|
|
f3e89e25c5 | ||
|
|
655861cf12 | ||
|
|
050bc33241 | ||
|
|
46ee920b93 | ||
|
|
3a9e9a4bef | ||
|
|
3beb465247 | ||
|
|
2ec69ae361 | ||
|
|
52b07f467e | ||
|
|
81a1a03ed0 | ||
|
|
869440a7ed | ||
|
|
20f26b534d | ||
|
|
91cba8a17f | ||
|
|
be429caba3 | ||
|
|
8176ba22aa | ||
|
|
4b9add2fc3 | ||
|
|
55f60601ca | ||
|
|
876f351127 | ||
|
|
089516a6f2 | ||
|
|
f511e201f9 | ||
|
|
52617455ce | ||
|
|
d679f711eb | ||
|
|
68dbbc8d41 | ||
|
|
59ebdce605 | ||
|
|
310747a636 | ||
|
|
a3b4b39ff1 | ||
|
|
fb91aad583 | ||
|
|
825d4baf90 | ||
|
|
8faed8d9fe | ||
|
|
272e815522 | ||
|
|
06d65ef5ac | ||
|
|
d886c1761b | ||
|
|
47aa28e530 | ||
|
|
fbd5b49215 | ||
|
|
dad2196776 | ||
|
|
b50d740542 | ||
|
|
3e7efe5ef1 | ||
|
|
75a10bfcaf | ||
|
|
730e5951bc | ||
|
|
941fb5a367 | ||
|
|
17d471c07c | ||
|
|
ef1d8bc3bd | ||
|
|
581c954f40 | ||
|
|
98068beca0 | ||
|
|
3c1bf4ccfe | ||
|
|
1836ec431c | ||
|
|
14c105b86e | ||
|
|
2f6d240900 | ||
|
|
edc3d34beb | ||
|
|
53f1bf2af2 | ||
|
|
1fc6d214f4 | ||
|
|
bf5c4daf86 | ||
|
|
ec56167032 | ||
|
|
15339aec64 | ||
|
|
a90110d9ba | ||
|
|
e24ea3652c | ||
|
|
508c28e689 | ||
|
|
fec3e685c9 | ||
|
|
b16cb6575d | ||
|
|
329fbd01d8 | ||
|
|
01b0e98ab2 | ||
|
|
638c085ffa | ||
|
|
8a2de5f23e | ||
|
|
2c90c97ccd | ||
|
|
2db2ef82f2 | ||
|
|
eb0581c264 | ||
|
|
61fb5fe29c | ||
|
|
9fd415d3f5 | ||
|
|
b7366ae3fc | ||
|
|
6cdcf75e6b | ||
|
|
d57fe4395e |
2
.github/workflows/build-test.yaml
vendored
2
.github/workflows/build-test.yaml
vendored
@@ -4,7 +4,7 @@ on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-20.04
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
|
||||
138
config/example-generic-caretesian.cfg
Normal file
138
config/example-generic-caretesian.cfg
Normal file
@@ -0,0 +1,138 @@
|
||||
# This file is an example config file for cartesian style printers.
|
||||
# One may copy and edit this file to configure a new printer with
|
||||
# a generic cartesian kinematics.
|
||||
|
||||
# DO NOT COPY THIS FILE WITHOUT CAREFULLY READING AND UPDATING IT
|
||||
# FIRST. Incorrectly configured parameters may cause damage.
|
||||
|
||||
# See docs/Config_Reference.md for a description of parameters.
|
||||
|
||||
[carriage x]
|
||||
position_endstop: 0
|
||||
position_max: 300
|
||||
homing_speed: 50
|
||||
endstop_pin: ^PE5
|
||||
|
||||
[carriage y]
|
||||
position_endstop: 0
|
||||
position_max: 200
|
||||
homing_speed: 50
|
||||
endstop_pin: ^PJ1
|
||||
|
||||
[extra_carriage y1]
|
||||
primary_carriage: y
|
||||
endstop_pin: ^PB6
|
||||
|
||||
[carriage z]
|
||||
position_endstop: 0.5
|
||||
position_max: 100
|
||||
endstop_pin: ^PD3
|
||||
|
||||
[dual_carriage u]
|
||||
primary_carriage: x
|
||||
position_endstop: 300
|
||||
position_max: 300
|
||||
homing_speed: 50
|
||||
endstop_pin: ^PE4
|
||||
|
||||
[stepper my_stepper_x]
|
||||
carriages: x+y
|
||||
step_pin: PF0
|
||||
dir_pin: PF1
|
||||
enable_pin: !PD7
|
||||
microsteps: 16
|
||||
rotation_distance: 40
|
||||
|
||||
[stepper my_stepper_u]
|
||||
carriages: u-y1
|
||||
step_pin: PH1
|
||||
dir_pin: PH0
|
||||
enable_pin: !PA1
|
||||
microsteps: 16
|
||||
rotation_distance: 40
|
||||
|
||||
[stepper my_stepper_y0]
|
||||
carriages: y
|
||||
step_pin: PF6
|
||||
dir_pin: !PF7
|
||||
enable_pin: !PF2
|
||||
microsteps: 16
|
||||
rotation_distance: 40
|
||||
|
||||
[stepper my_stepper_y1]
|
||||
carriages: y1
|
||||
step_pin: PE3
|
||||
dir_pin: !PH6
|
||||
enable_pin: !PG5
|
||||
microsteps: 16
|
||||
rotation_distance: 40
|
||||
|
||||
[stepper my_stepper_z0]
|
||||
carriages: z
|
||||
step_pin: PL3
|
||||
dir_pin: PL1
|
||||
enable_pin: !PK0
|
||||
microsteps: 16
|
||||
rotation_distance: 8
|
||||
|
||||
[stepper my_stepper_z1]
|
||||
carriages: z
|
||||
step_pin: PG1
|
||||
dir_pin: PG0
|
||||
enable_pin: !PH3
|
||||
microsteps: 16
|
||||
rotation_distance: 8
|
||||
|
||||
[extruder]
|
||||
step_pin: PA4
|
||||
dir_pin: PA6
|
||||
enable_pin: !PA2
|
||||
microsteps: 16
|
||||
rotation_distance: 33.5
|
||||
nozzle_diameter: 0.400
|
||||
filament_diameter: 1.750
|
||||
heater_pin: PB4
|
||||
sensor_type: EPCOS 100K B57560G104F
|
||||
sensor_pin: PK5
|
||||
control: pid
|
||||
pid_Kp: 22.2
|
||||
pid_Ki: 1.08
|
||||
pid_Kd: 114
|
||||
min_temp: 0
|
||||
max_temp: 250
|
||||
|
||||
[extruder1]
|
||||
step_pin: PC1
|
||||
dir_pin: PC3
|
||||
enable_pin: !PC7
|
||||
microsteps: 16
|
||||
rotation_distance: 33.5
|
||||
nozzle_diameter: 0.400
|
||||
filament_diameter: 1.750
|
||||
heater_pin: PB5
|
||||
sensor_type: EPCOS 100K B57560G104F
|
||||
sensor_pin: PK7
|
||||
control: pid
|
||||
pid_Kp: 22.2
|
||||
pid_Ki: 1.08
|
||||
pid_Kd: 114
|
||||
min_temp: 0
|
||||
max_temp: 250
|
||||
|
||||
[heater_bed]
|
||||
heater_pin: PH5
|
||||
sensor_type: EPCOS 100K B57560G104F
|
||||
sensor_pin: PK6
|
||||
control: watermark
|
||||
min_temp: 0
|
||||
max_temp: 110
|
||||
|
||||
[mcu]
|
||||
serial: /dev/ttyACM0
|
||||
|
||||
[printer]
|
||||
kinematics: generic_cartesian
|
||||
max_velocity: 500
|
||||
max_accel: 3000
|
||||
max_z_velocity: 20
|
||||
max_z_accel: 100
|
||||
@@ -39,7 +39,7 @@ position_max: 270
|
||||
# Motor4
|
||||
# The M8P only has 4 heater outputs which leaves an extra stepper
|
||||
# This can be used for a second Z stepper, dual_carriage, extruder co-stepper,
|
||||
# or other accesory such as an MMU
|
||||
# or other accessory such as an MMU
|
||||
#[stepper_]
|
||||
#step_pin: PD3
|
||||
#dir_pin: PD2
|
||||
|
||||
@@ -40,7 +40,7 @@ position_max: 270
|
||||
# Motor4
|
||||
# The M8P only has 4 heater outputs which leaves an extra stepper
|
||||
# This can be used for a second Z stepper, dual_carriage, extruder co-stepper,
|
||||
# or other accesory such as an MMU
|
||||
# or other accessory such as an MMU
|
||||
#[stepper_]
|
||||
#step_pin: PD3
|
||||
#dir_pin: PD2
|
||||
|
||||
@@ -43,7 +43,7 @@ position_max: 200
|
||||
# Motor-4
|
||||
# The Octopus only has 4 heater outputs which leaves an extra stepper
|
||||
# This can be used for a second Z stepper, dual_carriage, extruder co-stepper,
|
||||
# or other accesory such as an MMU
|
||||
# or other accessory such as an MMU
|
||||
#[stepper_]
|
||||
#step_pin: PB8
|
||||
#dir_pin: PB9
|
||||
|
||||
@@ -52,7 +52,7 @@ position_max: 200
|
||||
# Driver3
|
||||
# The Octopus only has 4 heater outputs which leaves an extra stepper
|
||||
# This can be used for a second Z stepper, dual_carriage, extruder co-stepper,
|
||||
# or other accesory such as an MMU
|
||||
# or other accessory such as an MMU
|
||||
#[stepper_]
|
||||
#step_pin: PG4
|
||||
#dir_pin: PC1
|
||||
|
||||
@@ -153,3 +153,48 @@ aliases:
|
||||
#uart_pin: PD12
|
||||
#run_current: 0.600
|
||||
#diag_pin:
|
||||
|
||||
########################################
|
||||
# TMC2130 configuration
|
||||
########################################
|
||||
|
||||
#[tmc2130 stepper_x]
|
||||
#cs_pin: PE0
|
||||
#spi_software_miso_pin: PA14
|
||||
#spi_software_mosi_pin: PE14
|
||||
#spi_software_sclk_pin: PE15
|
||||
#run_current: 0.800
|
||||
#diag1_pin: PC1
|
||||
|
||||
#[tmc2130 stepper_y]
|
||||
#cs_pin: PD3
|
||||
#spi_software_miso_pin: PA14
|
||||
#spi_software_mosi_pin: PE14
|
||||
#spi_software_sclk_pin: PE15
|
||||
#run_current: 0.800
|
||||
#diag1_pin: PC3
|
||||
|
||||
#[tmc2130 stepper_z]
|
||||
#cs_pin: PD0
|
||||
#spi_software_miso_pin: PA14
|
||||
#spi_software_mosi_pin: PE14
|
||||
#spi_software_sclk_pin: PE15
|
||||
#run_current: 0.800
|
||||
#diag1_pin: PC0
|
||||
|
||||
#[tmc2130 extruder]
|
||||
#cs_pin: PC6
|
||||
#spi_software_miso_pin: PA14
|
||||
#spi_software_mosi_pin: PE14
|
||||
#spi_software_sclk_pin: PE15
|
||||
#run_current: 0.600
|
||||
#diag1_pin: PC2
|
||||
|
||||
#[tmc2130 extruder1]
|
||||
#cs_pin: PD12
|
||||
#spi_software_miso_pin: PA14
|
||||
#spi_software_mosi_pin: PE14
|
||||
#spi_software_sclk_pin: PE15
|
||||
#run_current: 0.600
|
||||
#stealthchop_threshold: 999999
|
||||
#diag1_pin: PA0
|
||||
|
||||
@@ -122,6 +122,12 @@ max_z_accel: 100
|
||||
[static_digital_output usb_pullup_enable]
|
||||
pins: !PA14
|
||||
|
||||
#[neopixel my_neopixel]
|
||||
#pin: PA8
|
||||
|
||||
[output_pin red_led]
|
||||
pin: PA13
|
||||
|
||||
[board_pins]
|
||||
aliases:
|
||||
# EXP1 header
|
||||
|
||||
@@ -89,32 +89,32 @@ max_z_velocity: 5
|
||||
max_z_accel: 100
|
||||
|
||||
[mcp4018 x_axis_pot]
|
||||
scl_pin: PJ5
|
||||
sda_pin: PF3
|
||||
i2c_software_scl_pin: PJ5
|
||||
i2c_software_sda_pin: PF3
|
||||
wiper: 0.50
|
||||
scale: 0.773
|
||||
|
||||
[mcp4018 y_axis_pot]
|
||||
scl_pin: PJ5
|
||||
sda_pin: PF7
|
||||
i2c_software_scl_pin: PJ5
|
||||
i2c_software_sda_pin: PF7
|
||||
wiper: 0.50
|
||||
scale: 0.773
|
||||
|
||||
[mcp4018 z_axis_pot]
|
||||
scl_pin: PJ5
|
||||
sda_pin: PK3
|
||||
i2c_software_scl_pin: PJ5
|
||||
i2c_software_sda_pin: PK3
|
||||
wiper: 0.50
|
||||
scale: 0.773
|
||||
|
||||
[mcp4018 a_axis_pot]
|
||||
scl_pin: PJ5
|
||||
sda_pin: PA5
|
||||
i2c_software_scl_pin: PJ5
|
||||
i2c_software_sda_pin: PA5
|
||||
wiper: 0.50
|
||||
scale: 0.773
|
||||
|
||||
[mcp4018 b_axis_pot]
|
||||
scl_pin: PJ5
|
||||
sda_pin: PJ6
|
||||
i2c_software_scl_pin: PJ5
|
||||
i2c_software_sda_pin: PJ6
|
||||
wiper: 0.50
|
||||
scale: 0.773
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@
|
||||
# FSR switch (z endstop) location [homing_override] section
|
||||
# FSR switch (z endstop) offset for Z0 [stepper_z] section
|
||||
# Probe points [quad_gantry_level] section
|
||||
# Min & Max gantry corner postions [quad_gantry_level] section
|
||||
# Min & Max gantry corner positions [quad_gantry_level] section
|
||||
# PID tune [extruder] and [heater_bed] sections
|
||||
# Fine tune E steps [extruder] section
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
# FSR switch (z endstop) location [homing_override] section
|
||||
# FSR switch (z endstop) offset for Z0 [stepper_z] section
|
||||
# Probe points [quad_gantry_level] section
|
||||
# Min & Max gantry corner postions [quad_gantry_level] section
|
||||
# Min & Max gantry corner positions [quad_gantry_level] section
|
||||
# PID tune [extruder] and [heater_bed] sections
|
||||
# Fine tune E steps [extruder] section
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ endstop_pin: ^PE4
|
||||
homing_speed: 60
|
||||
# The next parameter needs to be adjusted for
|
||||
# your printer. You may want to start with 280
|
||||
# and meassure the distance from nozzle to bed.
|
||||
# and measure the distance from nozzle to bed.
|
||||
# This value then needs to be added.
|
||||
position_endstop: 273.0
|
||||
arm_length: 229.4
|
||||
|
||||
@@ -43,7 +43,7 @@ position_max: 400
|
||||
#Uncomment if you have a BL-Touch:
|
||||
#position_min: -4
|
||||
#endstop_pin: probe:z_virtual_endstop
|
||||
#and comment the follwing lines:
|
||||
#and comment the following lines:
|
||||
position_endstop: 0.0
|
||||
endstop_pin: ^PD3 #ar18
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
# This file contains pin mappings for the stock 2020 Creality CR6-SE.
|
||||
# This file contains pin mappings for the stock 2020 Creality CR6-SE
|
||||
# with the early 4.5.2 board only.
|
||||
# To use this config, during "make menuconfig" select the STM32F103
|
||||
# with a "28KiB bootloader" and serial (on USART1 PA10/PA9)
|
||||
# communication.
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
# This file contains pin mappings for the Creality CR6-SE with Rev. 4.5.3 Motherboard (Late 2020/2021) as the heater pins changed.
|
||||
# This file contains pin mappings for the Creality CR6-SE
|
||||
# with Rev. 4.5.3 Motherboard (Late 2020/2021) as the heater pins changed.
|
||||
# This config also works for the CR-ERA_V1.1.0.3
|
||||
# To use this config, during "make menuconfig" select the STM32F103
|
||||
# with a "28KiB bootloader" and serial (on USART1 PA10/PA9)
|
||||
# communication.
|
||||
|
||||
@@ -81,7 +81,7 @@ pin: PA0
|
||||
kick_start_time: 0.5
|
||||
|
||||
# Hotend fan
|
||||
# set fan runnig when extruder temperature is over 60
|
||||
# set fan running when extruder temperature is over 60
|
||||
[heater_fan heatbreak_fan]
|
||||
pin: PC0
|
||||
heater:extruder
|
||||
|
||||
@@ -127,32 +127,32 @@ max_z_velocity: 5
|
||||
max_z_accel: 100
|
||||
|
||||
[mcp4018 x_axis_pot]
|
||||
scl_pin: PJ5
|
||||
sda_pin: PF3
|
||||
i2c_software_scl_pin: PJ5
|
||||
i2c_software_sda_pin: PF3
|
||||
wiper: 118
|
||||
scale: 127
|
||||
|
||||
[mcp4018 y_axis_pot]
|
||||
scl_pin: PJ5
|
||||
sda_pin: PF7
|
||||
i2c_software_scl_pin: PJ5
|
||||
i2c_software_sda_pin: PF7
|
||||
wiper: 118
|
||||
scale: 127
|
||||
|
||||
[mcp4018 z_axis_pot]
|
||||
scl_pin: PJ5
|
||||
sda_pin: PK3
|
||||
i2c_software_scl_pin: PJ5
|
||||
i2c_software_sda_pin: PK3
|
||||
wiper: 40
|
||||
scale: 127
|
||||
|
||||
[mcp4018 a_axis_pot]
|
||||
scl_pin: PJ5
|
||||
sda_pin: PA5
|
||||
i2c_software_scl_pin: PJ5
|
||||
i2c_software_sda_pin: PA5
|
||||
wiper: 118
|
||||
scale: 127
|
||||
|
||||
[mcp4018 b_axis_pot]
|
||||
scl_pin: PJ5
|
||||
sda_pin: PJ6
|
||||
i2c_software_scl_pin: PJ5
|
||||
i2c_software_sda_pin: PJ6
|
||||
wiper: 118
|
||||
scale: 127
|
||||
|
||||
|
||||
@@ -195,7 +195,7 @@ samples_tolerance: 0.200
|
||||
samples_tolerance_retries: 2
|
||||
|
||||
[bed_tilt]
|
||||
# Enable bed tilt measurments using the probe we defined above
|
||||
# Enable bed tilt measurements using the probe we defined above
|
||||
# Probe points using X0 Y0 offsets @ 0.01mm/step
|
||||
points: -2, -6
|
||||
156, -6
|
||||
|
||||
@@ -183,7 +183,7 @@ samples: 2
|
||||
samples_tolerance: 0.100
|
||||
|
||||
[bed_tilt]
|
||||
#Enable bed tilt measurments using the probe we defined above
|
||||
#Enable bed tilt measurements using the probe we defined above
|
||||
#Probe points using X0 Y0 offsets @ 0.01mm/step
|
||||
points: -3, -6
|
||||
282, -6
|
||||
|
||||
@@ -37,7 +37,7 @@ microsteps: 16
|
||||
rotation_distance: 4
|
||||
# Required if not using probe for the virtual endstop
|
||||
# endstop_pin: ^PD3
|
||||
# position_endstop: 250 # Will need ajustment
|
||||
# position_endstop: 250 # Will need adjustment
|
||||
endstop_pin: probe:z_virtual_endstop
|
||||
homing_speed: 10.0
|
||||
position_max: 250
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# This file constains the pin mappings for the SeeMeCNC Rostock Max
|
||||
# This file contains the pin mappings for the SeeMeCNC Rostock Max
|
||||
# (version 2) delta printer from 2015. To use this config, the
|
||||
# firmware should be compiled for the AVR atmega2560.
|
||||
|
||||
|
||||
177
config/sample-corexyuv.cfg
Normal file
177
config/sample-corexyuv.cfg
Normal file
@@ -0,0 +1,177 @@
|
||||
# This file contains a configuration snippet for a CoreXYUV
|
||||
# printer with an independent dual extruder moving over X and Y axes.
|
||||
|
||||
# See docs/Config_Reference.md for a description of parameters.
|
||||
|
||||
[carriage x]
|
||||
position_endstop: 0
|
||||
position_max: 300
|
||||
homing_speed: 50
|
||||
endstop_pin: ^PE5
|
||||
|
||||
[carriage y]
|
||||
position_endstop: 0
|
||||
position_max: 200
|
||||
homing_speed: 50
|
||||
endstop_pin: ^PJ1
|
||||
|
||||
[dual_carriage u]
|
||||
primary_carriage: x
|
||||
safe_distance: 70
|
||||
position_endstop: 300
|
||||
position_max: 300
|
||||
homing_speed: 50
|
||||
endstop_pin: ^PE4
|
||||
|
||||
[dual_carriage v]
|
||||
primary_carriage: y
|
||||
safe_distance: 50
|
||||
position_endstop: 200
|
||||
position_max: 200
|
||||
homing_speed: 50
|
||||
endstop_pin: ^PD4
|
||||
|
||||
[stepper a]
|
||||
carriages: x+y
|
||||
step_pin: PF0
|
||||
dir_pin: PF1
|
||||
enable_pin: !PD7
|
||||
microsteps: 16
|
||||
rotation_distance: 40
|
||||
|
||||
[stepper b]
|
||||
carriages: u-v
|
||||
step_pin: PH1
|
||||
dir_pin: PH0
|
||||
enable_pin: !PA1
|
||||
microsteps: 16
|
||||
rotation_distance: 40
|
||||
|
||||
[stepper c]
|
||||
carriages: x-y
|
||||
step_pin: PF6
|
||||
dir_pin: !PF7
|
||||
enable_pin: !PF2
|
||||
microsteps: 16
|
||||
rotation_distance: 40
|
||||
|
||||
[stepper d]
|
||||
carriages: u+v
|
||||
step_pin: PE3
|
||||
dir_pin: !PH6
|
||||
enable_pin: !PG5
|
||||
microsteps: 16
|
||||
rotation_distance: 40
|
||||
|
||||
[extruder]
|
||||
step_pin: PA4
|
||||
dir_pin: PA6
|
||||
enable_pin: !PA2
|
||||
microsteps: 16
|
||||
rotation_distance: 33.5
|
||||
nozzle_diameter: 0.400
|
||||
filament_diameter: 1.750
|
||||
heater_pin: PB4
|
||||
sensor_type: EPCOS 100K B57560G104F
|
||||
sensor_pin: PK5
|
||||
control: pid
|
||||
pid_Kp: 22.2
|
||||
pid_Ki: 1.08
|
||||
pid_Kd: 114
|
||||
min_temp: 0
|
||||
max_temp: 250
|
||||
|
||||
[gcode_macro PARK_extruder]
|
||||
gcode:
|
||||
SET_DUAL_CARRIAGE CARRIAGE=x
|
||||
SET_DUAL_CARRIAGE CARRIAGE=y
|
||||
G90
|
||||
G1 X0 Y0
|
||||
|
||||
[gcode_macro T0]
|
||||
gcode:
|
||||
PARK_{printer.toolhead.extruder}
|
||||
ACTIVATE_EXTRUDER EXTRUDER=extruder
|
||||
SET_DUAL_CARRIAGE CARRIAGE=x
|
||||
SET_DUAL_CARRIAGE CARRIAGE=y
|
||||
|
||||
[extruder1]
|
||||
step_pin: PC1
|
||||
dir_pin: PC3
|
||||
enable_pin: !PC7
|
||||
microsteps: 16
|
||||
rotation_distance: 33.5
|
||||
nozzle_diameter: 0.400
|
||||
filament_diameter: 1.750
|
||||
heater_pin: PB5
|
||||
sensor_type: EPCOS 100K B57560G104F
|
||||
sensor_pin: PK7
|
||||
control: pid
|
||||
pid_Kp: 22.2
|
||||
pid_Ki: 1.08
|
||||
pid_Kd: 114
|
||||
min_temp: 0
|
||||
max_temp: 250
|
||||
|
||||
[gcode_macro PARK_extruder1]
|
||||
gcode:
|
||||
SET_DUAL_CARRIAGE CARRIAGE=u
|
||||
SET_DUAL_CARRIAGE CARRIAGE=v
|
||||
G90
|
||||
G1 X300 Y200
|
||||
|
||||
[gcode_macro T1]
|
||||
gcode:
|
||||
PARK_{printer.toolhead.extruder}
|
||||
ACTIVATE_EXTRUDER EXTRUDER=extruder1
|
||||
SET_DUAL_CARRIAGE CARRIAGE=u
|
||||
SET_DUAL_CARRIAGE CARRIAGE=v
|
||||
|
||||
# A helper script to activate copy mode
|
||||
[gcode_macro ACTIVATE_COPY_MODE]
|
||||
gcode:
|
||||
SET_DUAL_CARRIAGE CARRIAGE=x MODE=PRIMARY
|
||||
SET_DUAL_CARRIAGE CARRIAGE=y MODE=PRIMARY
|
||||
G1 X0 Y0
|
||||
ACTIVATE_EXTRUDER EXTRUDER=extruder
|
||||
SET_DUAL_CARRIAGE CARRIAGE=u MODE=PRIMARY
|
||||
SET_DUAL_CARRIAGE CARRIAGE=v MODE=PRIMARY
|
||||
G1 X150 Y100
|
||||
SET_DUAL_CARRIAGE CARRIAGE=u MODE=COPY
|
||||
SET_DUAL_CARRIAGE CARRIAGE=v MODE=COPY
|
||||
SYNC_EXTRUDER_MOTION EXTRUDER=extruder1 MOTION_QUEUE=extruder
|
||||
|
||||
# A helper script to activate mirror mode
|
||||
[gcode_macro ACTIVATE_MIRROR_MODE]
|
||||
gcode:
|
||||
SET_DUAL_CARRIAGE CARRIAGE=x MODE=PRIMARY
|
||||
SET_DUAL_CARRIAGE CARRIAGE=y MODE=PRIMARY
|
||||
G1 X0 Y0
|
||||
ACTIVATE_EXTRUDER EXTRUDER=extruder
|
||||
SET_DUAL_CARRIAGE CARRIAGE=u MODE=PRIMARY
|
||||
SET_DUAL_CARRIAGE CARRIAGE=v MODE=PRIMARY
|
||||
G1 X300 Y100
|
||||
SET_DUAL_CARRIAGE CARRIAGE=u MODE=MIRROR
|
||||
SET_DUAL_CARRIAGE CARRIAGE=v MODE=COPY
|
||||
SYNC_EXTRUDER_MOTION EXTRUDER=extruder1 MOTION_QUEUE=extruder
|
||||
|
||||
[printer]
|
||||
kinematics: generic_cartesian
|
||||
max_velocity: 300
|
||||
max_accel: 3000
|
||||
max_z_velocity: 5
|
||||
max_z_accel: 100
|
||||
|
||||
## An optional input shaper support
|
||||
#[input_shaper]
|
||||
## The section is intentionally empty
|
||||
#
|
||||
#[delayed_gcode init_shaper]
|
||||
#initial_duration: 0.1
|
||||
#gcode:
|
||||
# SET_DUAL_CARRIAGE CARRIAGE=u
|
||||
# SET_DUAL_CARRIAGE CARRIAGE=v
|
||||
# SET_INPUT_SHAPER SHAPER_TYPE_X=<dual_carriage_x_shaper> SHAPER_FREQ_X=<dual_carriage_x_freq> SHAPER_TYPE_Y=<dual_carriage_y_shaper> SHAPER_FREQ_Y=<dual_carriage_y_freq>
|
||||
# SET_DUAL_CARRIAGE CARRIAGE=x MODE=PRIMARY
|
||||
# SET_DUAL_CARRIAGE CARRIAGE=y MODE=PRIMARY
|
||||
# SET_INPUT_SHAPER SHAPER_TYPE_X=<primary_carriage_x_shaper> SHAPER_FREQ_X=<primary_carriage_x_freq> SHAPER_TYPE_Y=<primary_carriage_y_shaper> SHAPER_FREQ_Y=<primary_carriage_y_freq>
|
||||
@@ -6,7 +6,7 @@
|
||||
# Communication interface of "CAN bus (on PA25/PA24)"
|
||||
|
||||
# To flash the board use a debugger, or use a raspberry pi and follow
|
||||
# the instructions at docs/Bootloaders.md fot the SAMC21. You may
|
||||
# the instructions at docs/Bootloaders.md for the SAMC21. You may
|
||||
# supply power to the 1LC by connecting the 3.3v rail on the Pi to the
|
||||
# 5v input of the SWD header on the 1LC.
|
||||
|
||||
|
||||
@@ -96,7 +96,7 @@ switch_pin: !P1.28 # P1.28 for X-max
|
||||
# variable_pause_z : z lift when MMU2S need intervention and the printer is paused
|
||||
# variable_min_temp_extruder : minimal required heater temperature to load/unload filament from the extruder gear to the nozzle
|
||||
# variable_extruder_eject_temp : heater temperature used to eject filament during home if the filament is already loaded
|
||||
# variable_enable_5in1 : pass from MMU2S standart (0) to MMU2S-5in1 mode with splitter
|
||||
# variable_enable_5in1 : pass from MMU2S standard (0) to MMU2S-5in1 mode with splitter
|
||||
#
|
||||
################################
|
||||
[gcode_macro VAR_MMU2S]
|
||||
@@ -394,7 +394,7 @@ gcode:
|
||||
{% endif %}
|
||||
{% endif %}
|
||||
|
||||
# Retry unload, try correct misalignement of bondtech gear
|
||||
# Retry unload, try correct misalignment of bondtech gear
|
||||
[gcode_macro RETRY_UNLOAD_FILAMENT_IN_EXTRUDER]
|
||||
gcode:
|
||||
{% if printer["filament_switch_sensor ir_sensor"].filament_detected == True %}
|
||||
@@ -444,7 +444,7 @@ gcode:
|
||||
{% endif %}
|
||||
{% endif %}
|
||||
|
||||
# Ramming process for standart PLA, code extracted from slic3r gcode
|
||||
# Ramming process for standard PLA, code extracted from slic3r gcode
|
||||
[gcode_macro RAMMING_SLICER]
|
||||
gcode:
|
||||
G91
|
||||
|
||||
@@ -364,37 +364,42 @@ and might later produce asynchronous messages such as:
|
||||
The "header" field in the initial query response is used to describe
|
||||
the fields found in later "data" responses.
|
||||
|
||||
### hx71x/dump_hx71x
|
||||
### load_cell/dump_force
|
||||
|
||||
This endpoint is used to subscribe to raw HX711 and HX717 ADC data.
|
||||
Obtaining these low-level ADC updates may be useful for diagnostic
|
||||
and debugging purposes. Using this endpoint may increase Klipper's
|
||||
system load.
|
||||
This endpoint is used to subscribe to force data produced by a load_cell.
|
||||
Using this endpoint may increase Klipper's system load.
|
||||
|
||||
A request may look like:
|
||||
`{"id": 123, "method":"hx71x/dump_hx71x",
|
||||
`{"id": 123, "method":"load_cell/dump_force",
|
||||
"params": {"sensor": "load_cell", "response_template": {}}}`
|
||||
and might return:
|
||||
`{"id": 123,"result":{"header":["time","counts","value"]}}`
|
||||
`{"id": 123,"result":{"header":["time", "force (g)", "counts", "tare_counts"]}}`
|
||||
and might later produce asynchronous messages such as:
|
||||
`{"params":{"data":[[3292.432935, 562534, 0.067059278],
|
||||
[3292.4394937, 5625322, 0.670590639]]}}`
|
||||
`{"params":{"data":[[3292.432935, 40.65, 562534, -234467]]}}`
|
||||
|
||||
### ads1220/dump_ads1220
|
||||
The "header" field in the initial query response is used to describe
|
||||
the fields found in later "data" responses.
|
||||
|
||||
This endpoint is used to subscribe to raw ADS1220 ADC data.
|
||||
Obtaining these low-level ADC updates may be useful for diagnostic
|
||||
and debugging purposes. Using this endpoint may increase Klipper's
|
||||
system load.
|
||||
### load_cell_probe/dump_taps
|
||||
|
||||
This endpoint is used to subscribe to details of probing "tap" events.
|
||||
Using this endpoint may increase Klipper's system load.
|
||||
|
||||
A request may look like:
|
||||
`{"id": 123, "method":"ads1220/dump_ads1220",
|
||||
`{"id": 123, "method":"load_cell/dump_force",
|
||||
"params": {"sensor": "load_cell", "response_template": {}}}`
|
||||
and might return:
|
||||
`{"id": 123,"result":{"header":["time","counts","value"]}}`
|
||||
`{"id": 123,"result":{"header":["probe_tap_event"]}}`
|
||||
and might later produce asynchronous messages such as:
|
||||
`{"params":{"data":[[3292.432935, 562534, 0.067059278],
|
||||
[3292.4394937, 5625322, 0.670590639]]}}`
|
||||
```
|
||||
{"params":{"tap":'{
|
||||
"time": [118032.28039, 118032.2834, ...],
|
||||
"force": [-459.4213119680034, -458.1640702543264, ...],
|
||||
}}}
|
||||
```
|
||||
|
||||
This data can be used to render:
|
||||
* The time/force graph
|
||||
|
||||
### pause_resume/cancel
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Axis Twist Compensation
|
||||
|
||||
This document describes the [axis_twist_compensation] module.
|
||||
This document describes the `[axis_twist_compensation]` module.
|
||||
|
||||
Some printers may have a small twist in their X rail which can skew the results
|
||||
of a probe attached to the X carriage.
|
||||
@@ -25,7 +25,7 @@ try to probe the bed without attaching the probe if you use it.
|
||||
> correctly set as they greatly influence calibration.
|
||||
|
||||
### Basic Usage: X-Axis Calibration
|
||||
1. After setting up the ```[axis_twist_compensation]``` module, run:
|
||||
1. After setting up the `[axis_twist_compensation]` module, run:
|
||||
```
|
||||
AXIS_TWIST_COMPENSATION_CALIBRATE
|
||||
```
|
||||
@@ -39,8 +39,8 @@ SAMPLE_COUNT=<value>
|
||||
``
|
||||
|
||||
2. **Adjust Your Z Offset:**
|
||||
After completing the calibration, be sure to [adjust your Z offset]
|
||||
(Probe_Calibrate.md#calibrating-probe-z-offset).
|
||||
After completing the calibration, be sure to
|
||||
[adjust your Z offset](Probe_Calibrate.md#calibrating-probe-z-offset).
|
||||
|
||||
3. **Perform Bed Leveling Operations:**
|
||||
Use probe-based operations as needed, such as:
|
||||
@@ -61,22 +61,13 @@ AXIS_TWIST_COMPENSATION_CALIBRATE AXIS=Y
|
||||
```
|
||||
This will guide you through the same measuring process as for the X-axis.
|
||||
|
||||
### Automatic Calibration for Both Axes
|
||||
To perform automatic calibration for both the X and Y axes without manual
|
||||
intervention, use:
|
||||
```
|
||||
AXIS_TWIST_COMPENSATION_CALIBRATE AUTO=True
|
||||
```
|
||||
In this mode, the calibration process will run for both axes automatically.
|
||||
|
||||
|
||||
> **Tip:** Bed temperature and nozzle temperature and size do not seem to have
|
||||
> an influence to the calibration process.
|
||||
|
||||
## [axis_twist_compensation] setup and commands
|
||||
|
||||
Configuration options for [axis_twist_compensation] can be found in the
|
||||
Configuration options for `[axis_twist_compensation]` can be found in the
|
||||
[Configuration Reference](Config_Reference.md#axis_twist_compensation).
|
||||
|
||||
Commands for [axis_twist_compensation] can be found in the
|
||||
Commands for `[axis_twist_compensation]` can be found in the
|
||||
[G-Codes Reference](G-Codes.md#axis_twist_compensation)
|
||||
|
||||
@@ -267,7 +267,7 @@ by heat or interference. This can make calculating the probe's z-offset
|
||||
challenging, particularly at different bed temperatures. As such, some
|
||||
printers use an endstop for homing the Z axis and a probe for calibrating the
|
||||
mesh. In this configuration it is possible offset the mesh so that the (X, Y)
|
||||
`reference position` applies zero adjustment. The `reference postion` should
|
||||
`reference position` applies zero adjustment. The `reference position` should
|
||||
be the location on the bed where a
|
||||
[Z_ENDSTOP_CALIBRATE](./Manual_Level.md#calibrating-a-z-endstop)
|
||||
paper test is performed. The bed_mesh module provides the
|
||||
@@ -292,33 +292,6 @@ probe_count: 5, 3
|
||||
z-offset. Note that this coordinate must NOT be in a location specified as
|
||||
a `faulty_region` if a probe is necessary.
|
||||
|
||||
#### The deprecated relative_reference_index
|
||||
|
||||
Existing configurations using the `relative_reference_index` option must be
|
||||
updated to use the `zero_reference_position`. The response to the
|
||||
[BED_MESH_OUTPUT PGP=1](#output) gcode command will include the (X, Y)
|
||||
coordinate associated with the index; this position may be used as the value for
|
||||
the `zero_reference_position`. The output will look similar to the following:
|
||||
|
||||
```
|
||||
// bed_mesh: generated points
|
||||
// Index | Tool Adjusted | Probe
|
||||
// 0 | (1.0, 1.0) | (24.0, 6.0)
|
||||
// 1 | (36.7, 1.0) | (59.7, 6.0)
|
||||
// 2 | (72.3, 1.0) | (95.3, 6.0)
|
||||
// 3 | (108.0, 1.0) | (131.0, 6.0)
|
||||
... (additional generated points)
|
||||
// bed_mesh: relative_reference_index 24 is (131.5, 108.0)
|
||||
```
|
||||
|
||||
_Note: The above output is also printed in `klippy.log` during initialization._
|
||||
|
||||
Using the example above we see that the `relative_reference_index` is
|
||||
printed along with its coordinate. Thus the `zero_reference_position`
|
||||
is `131.5, 108`.
|
||||
|
||||
|
||||
|
||||
### Faulty Regions
|
||||
|
||||
It is possible for some areas of a bed to report inaccurate results when
|
||||
@@ -497,7 +470,8 @@ _Default Adaptive Margin: 0_
|
||||
|
||||
Initiates the probing procedure for Bed Mesh Calibration.
|
||||
|
||||
The mesh will be saved into a profile specified by the `PROFILE` parameter,
|
||||
The mesh will be immediately ready to use when the command completes and saved
|
||||
into a profile specified by the `PROFILE` parameter,
|
||||
or `default` if unspecified. The `METHOD` parameter takes one of the following
|
||||
values:
|
||||
|
||||
@@ -561,6 +535,10 @@ load the `default` profile it is recommended to add
|
||||
`BED_MESH_PROFILE LOAD=default` to either their `START_PRINT` macro or their
|
||||
slicer's "Start G-Code" configuration, whichever is applicable.
|
||||
|
||||
Note that this is not required if a new mesh is generated with
|
||||
`BED_MESH_CALIBRATE` in the `START_PRINT` macro or the slicer's "Start G-Code"
|
||||
and may produce unexpected results, especially with adaptive meshing.
|
||||
|
||||
Alternatively the old behavior of loading a profile at startup can be
|
||||
restored with a `[delayed_gcode]`:
|
||||
|
||||
|
||||
@@ -250,23 +250,22 @@ results were obtained by running an STM32F407 binary on an STM32F446
|
||||
|
||||
### STM32H7 step rate benchmark
|
||||
|
||||
The following configuration sequence is used on a STM32H743VIT6:
|
||||
The following configuration sequence is used on STM32H723:
|
||||
```
|
||||
allocate_oids count=3
|
||||
config_stepper oid=0 step_pin=PD4 dir_pin=PD3 invert_step=-1 step_pulse_ticks=0
|
||||
config_stepper oid=1 step_pin=PA15 dir_pin=PA8 invert_step=-1 step_pulse_ticks=0
|
||||
config_stepper oid=2 step_pin=PE2 dir_pin=PE3 invert_step=-1 step_pulse_ticks=0
|
||||
config_stepper oid=0 step_pin=PA13 dir_pin=PB5 invert_step=-1 step_pulse_ticks=52
|
||||
config_stepper oid=1 step_pin=PB2 dir_pin=PB6 invert_step=-1 step_pulse_ticks=52
|
||||
config_stepper oid=2 step_pin=PB3 dir_pin=PB7 invert_step=-1 step_pulse_ticks=52
|
||||
finalize_config crc=0
|
||||
```
|
||||
|
||||
The test was last run on commit `00191b5c` with gcc version
|
||||
`arm-none-eabi-gcc (15:8-2019-q3-1+b1) 8.3.1 20190703 (release)
|
||||
[gcc-8-branch revision 273027]`.
|
||||
The test was last run on commit `554ae78d` with gcc version
|
||||
`arm-none-eabi-gcc (Fedora 14.1.0-1.fc40) 14.1.0`.
|
||||
|
||||
| stm32h7 | ticks |
|
||||
| stm32h723 | ticks |
|
||||
| -------------------- | ----- |
|
||||
| 1 stepper | 44 |
|
||||
| 3 stepper | 198 |
|
||||
| 1 stepper | 70 |
|
||||
| 3 stepper | 181 |
|
||||
|
||||
### STM32G0B1 step rate benchmark
|
||||
|
||||
@@ -287,6 +286,25 @@ The test was last run on commit `247cd753` with gcc version
|
||||
| 1 stepper | 58 |
|
||||
| 3 stepper | 243 |
|
||||
|
||||
### STM32G4 step rate benchmark
|
||||
|
||||
The following configuration sequence is used on the STM32G431:
|
||||
```
|
||||
allocate_oids count=3
|
||||
config_stepper oid=0 step_pin=PA0 dir_pin=PB5 invert_step=-1 step_pulse_ticks=17
|
||||
config_stepper oid=1 step_pin=PB2 dir_pin=PB6 invert_step=-1 step_pulse_ticks=17
|
||||
config_stepper oid=2 step_pin=PB3 dir_pin=PB7 invert_step=-1 step_pulse_ticks=17
|
||||
finalize_config crc=0
|
||||
```
|
||||
|
||||
The test was last run on commit `cfa48fe3` with gcc version
|
||||
`arm-none-eabi-gcc (Fedora 14.1.0-1.fc40) 14.1.0`.
|
||||
|
||||
| stm32g431 | ticks |
|
||||
| ---------------- | ----- |
|
||||
| 1 stepper | 47 |
|
||||
| 3 stepper | 208 |
|
||||
|
||||
### LPC176x step rate benchmark
|
||||
|
||||
The following configuration sequence is used on the LPC176x:
|
||||
@@ -407,14 +425,14 @@ config_stepper oid=2 step_pin=gpio27 dir_pin=gpio5 invert_step=-1 step_pulse_tic
|
||||
finalize_config crc=0
|
||||
```
|
||||
|
||||
The test was last run on commit `f6718291` with gcc version
|
||||
The test was last run on commit `14c105b8` with gcc version
|
||||
`arm-none-eabi-gcc (Fedora 14.1.0-1.fc40) 14.1.0` on Raspberry Pi
|
||||
Pico and Pico 2 boards.
|
||||
|
||||
| rp2040 (*) | ticks |
|
||||
| -------------------- | ----- |
|
||||
| 1 stepper | 5 |
|
||||
| 3 stepper | 22 |
|
||||
| 1 stepper | 3 |
|
||||
| 3 stepper | 14 |
|
||||
|
||||
| rp2350 | ticks |
|
||||
| -------------------- | ----- |
|
||||
@@ -422,9 +440,9 @@ Pico and Pico 2 boards.
|
||||
| 3 stepper | 169 |
|
||||
|
||||
(*) Note that the reported rp2040 ticks are relative to a 12Mhz
|
||||
scheduling timer and do not correspond to its 125Mhz internal ARM
|
||||
processing rate. It is expected that 5 scheduling ticks corresponds to
|
||||
~47 ARM core cycles and 22 scheduling ticks corresponds to ~224 ARM
|
||||
scheduling timer and do not correspond to its 200Mhz internal ARM
|
||||
processing rate. It is expected that 3 scheduling ticks corresponds to
|
||||
~42 ARM core cycles and 14 scheduling ticks corresponds to ~225 ARM
|
||||
core cycles.
|
||||
|
||||
### Linux MCU step rate benchmark
|
||||
@@ -464,18 +482,23 @@ When the test completes, determine the difference between the clocks
|
||||
reported in the two "uptime" response messages. The total number of
|
||||
commands per second is then `100000 * mcu_frequency / clock_diff`.
|
||||
|
||||
Note that this test may saturate the USB/CPU capacity of a Raspberry
|
||||
Pi. If running on a Raspberry Pi, Beaglebone, or similar host computer
|
||||
then increase the delay (eg, `DELAY {clock + 20*freq} get_uptime`).
|
||||
Where applicable, the benchmarks below are with console.py running on
|
||||
a desktop class machine with the device connected via a high-speed
|
||||
hub.
|
||||
The USB tests may exceed the CPU capacity of a Raspberry Pi. If
|
||||
running on a Raspberry Pi, Beaglebone, or similar host computer then
|
||||
increase the delay (eg, `DELAY {clock + 20*freq} get_uptime`). Where
|
||||
applicable, the benchmarks below are with console.py running on a
|
||||
desktop class machine with the device connected via a super-speed hub.
|
||||
|
||||
The CAN bus tests may saturate the USB host controller of a Raspberry
|
||||
Pi (when testing via a standard gs_usb USB to CAN bus adapter). Where
|
||||
applicable, the CAN bus benchmarks below are with console.py running
|
||||
on a desktop class machine with a USB to CAN bus adapter connected via
|
||||
a super-speed USB hub.
|
||||
|
||||
| MCU | Rate | Build | Build compiler |
|
||||
| ------------------- | ---- | -------- | ------------------- |
|
||||
| stm32f042 (CAN) | 18K | c105adc8 | arm-none-eabi-gcc (GNU Tools 7-2018-q3-update) 7.3.1 |
|
||||
| atmega2560 (serial) | 23K | b161a69e | avr-gcc (GCC) 4.8.1 |
|
||||
| sam3x8e (serial) | 23K | b161a69e | arm-none-eabi-gcc (Fedora 7.1.0-5.fc27) 7.1.0 |
|
||||
| rp2350 (CAN) | 59K | 17b8ce4c | arm-none-eabi-gcc (Fedora 14.1.0-1.fc40) 14.1.0 |
|
||||
| at90usb1286 (USB) | 75K | 01d2183f | avr-gcc (GCC) 5.4.0 |
|
||||
| ar100 (serial) | 138K | 08d037c6 | or1k-linux-musl-gcc 9.3.0 |
|
||||
| samd21 (USB) | 223K | 01d2183f | arm-none-eabi-gcc (Fedora 7.4.0-1.fc30) 7.4.0 |
|
||||
|
||||
@@ -194,7 +194,7 @@ Alternatively, one can use a
|
||||
|
||||
When using OpenOCD with the SAMC21, extra steps must be taken to first
|
||||
put the chip into Cold Plugging mode if the board makes use of the
|
||||
SWD pins for other purposes. If using OpenOCD on a Rasberry Pi, this
|
||||
SWD pins for other purposes. If using OpenOCD on a Raspberry Pi, this
|
||||
can be done by running the following commands before invoking OpenOCD.
|
||||
```
|
||||
SWCLK=25
|
||||
|
||||
@@ -125,10 +125,14 @@ iface can0 can static
|
||||
frequency. As a result, it is recommended to use a CAN bus frequency
|
||||
of 1000000 when using "USB to CAN bus bridge mode".
|
||||
|
||||
Even at a CAN bus frequency of 1000000, there may not be sufficient
|
||||
bandwidth to run a `SHAPER_CALIBRATE` test if both the XY steppers
|
||||
and the accelerometer all communicate via a single "USB to CAN bus"
|
||||
interface.
|
||||
* It is only valid to use USB to CAN bridge mode if there is a
|
||||
functioning CAN bus with at least one other node available (in
|
||||
addition to the bridge node itself). Use a standard USB
|
||||
configuration if the goal is to communicate only with the single USB
|
||||
device. Using USB to CAN bridge mode without a fully functioning CAN
|
||||
bus (including terminating resistors and an additional node) may
|
||||
result in sporadic errors even when communicating with the bridge
|
||||
node.
|
||||
|
||||
* A USB to CAN bridge board will not appear as a USB serial device, it
|
||||
will not show up when running `ls /dev/serial/by-id`, and it can not
|
||||
|
||||
@@ -37,20 +37,36 @@ hours or more frequently) then it is an indication of a severe
|
||||
problem.
|
||||
|
||||
Incrementing `bytes_invalid` on a CAN bus connection is a symptom of
|
||||
reordered messages on the CAN bus. There are two known causes of
|
||||
reordered messages:
|
||||
1. Old versions of the popular candlight_firmware for USB CAN adapters
|
||||
had a bug that could cause reordered messages. If using a USB CAN
|
||||
adapter running this firmware then make sure to update to the
|
||||
latest firmware if incrementing `bytes_invalid` is observed.
|
||||
2. Some Linux kernel builds for embedded devices have been known to
|
||||
reorder CAN bus messages. It may be necessary to use an alternative
|
||||
Linux kernel or to use alternative hardware that supports
|
||||
mainstream Linux kernels that do not exhibit this problem.
|
||||
reordered messages on the CAN bus. If seen, make sure to:
|
||||
* Use a Linux kernel version 6.6.0 or later.
|
||||
* If using a USB-to-CANBUS adapter running candlelight firmware, use
|
||||
v2.0 or later of candleLight_fw.
|
||||
* If using Klipper's USB-to-CANBUS bridge mode, make sure the bridge
|
||||
node is flashed with Klipper v0.12.0 or later.
|
||||
|
||||
Reordered messages is a severe problem that must be fixed. It will
|
||||
result in unstable behavior and can lead to confusing errors at any
|
||||
part of a print.
|
||||
part of a print. An incrementing `bytes_invalid` is not caused by
|
||||
wiring or similar hardware issues and can only be fixed by identifying
|
||||
and updating the faulty software.
|
||||
|
||||
Older versions of the Linux kernel had a bug in the gs_usb canbus
|
||||
driver code that could cause reordered canbus packets. The issue is
|
||||
thought to be fixed in
|
||||
[Linux commit 24bc41b4](https://github.com/torvalds/linux/commit/24bc41b4558347672a3db61009c339b1f5692169)
|
||||
which was released in v6.6.0. In some cases, older Linux versions may
|
||||
not show the problem (due to how hardware interrupts are configured),
|
||||
however if problems are seen the recommended solution is to upgrade to
|
||||
a newer kernel.
|
||||
|
||||
Older versions of candlelight firmware could reorder canbus packets,
|
||||
and the issue is thought to be fixed in
|
||||
[candlelight_fw commit 8b3a7b45](https://github.com/candle-usb/candleLight_fw/commit/8b3a7b4565a3c9521b762b154c94c72c5acb2bcf).
|
||||
|
||||
Older versions of Klipper's USB-to-CANBUS bridge code could
|
||||
incorrectly drop canbus messages. This is not as severe as reordering
|
||||
messages, but it should still be fixed. It is thought to be fixed with
|
||||
[Klipper PR #6175](https://github.com/Klipper3d/klipper/pull/6175).
|
||||
|
||||
## Use an appropriate txqueuelen setting
|
||||
|
||||
@@ -102,6 +118,23 @@ necessary to increase the `txqueuelen` above the recommended value
|
||||
of 128. However, as above, care should be taken when selecting a new
|
||||
value to avoid excessive round-trip-time latency.
|
||||
|
||||
## Use `canbus_query.py` only to identify nodes never previously seen
|
||||
|
||||
It is only valid to use the
|
||||
[`canbus_query.py` tool](CANBUS.md#finding-the-canbus_uuid-for-new-micro-controllers)
|
||||
to identify micro-controllers that have never been previously
|
||||
identified. Once all nodes on a bus are identified, record the
|
||||
resulting uuids in the printer.cfg, and avoid running the tool
|
||||
unnecessarily.
|
||||
|
||||
The tool is implemented using a low-level mechanism that can cause
|
||||
nodes to internally observe bus errors. These internal errors may
|
||||
result in communication interruptions and may result is some nodes
|
||||
disconnecting from the bus.
|
||||
|
||||
It is not valid to use the tool to "ping" if a node is connected. Do
|
||||
not run the tool during an active print.
|
||||
|
||||
## Obtaining candump logs
|
||||
|
||||
The CAN bus messages sent to and from the micro-controller are handled
|
||||
|
||||
@@ -323,7 +323,7 @@ a month without updates.
|
||||
|
||||
Once the requirements are met, you need to:
|
||||
|
||||
1. update klipper-tranlations repository
|
||||
1. update klipper-translations repository
|
||||
[active_translations](https://github.com/Klipper3d/klipper-translations/blob/translations/active_translations)
|
||||
2. Optional: add a manual-index.md file in klipper-translations repository's
|
||||
`docs\locals\<lang>` folder to replace the language specific index.md (generated
|
||||
|
||||
@@ -286,6 +286,11 @@ The following may also be useful:
|
||||
during the `load_config()` or "connect event" phases. Use either
|
||||
`raise config.error("my error")` or `raise printer.config_error("my
|
||||
error")` to report the error.
|
||||
* Do not store a reference to the `config` object in a class member
|
||||
variable (nor in any similar location that may persist past initial
|
||||
module loading). The `config` object is a reference to a "config
|
||||
loading phase" class and it is not valid to invoke its methods after
|
||||
the "config loading phase" has completed.
|
||||
* Use the "pins" module to configure a pin on a micro-controller. This
|
||||
is typically done with something similar to
|
||||
`printer.lookup_object("pins").setup_pin("pwm",
|
||||
|
||||
@@ -8,6 +8,41 @@ All dates in this document are approximate.
|
||||
|
||||
## Changes
|
||||
|
||||
20250811: Support for the `max_accel_to_decel` parameter in the
|
||||
`[printer]` config section has been removed and support for the
|
||||
`ACCEL_TO_DECEL` parameter in the `SET_VELOCITY_LIMIT` command has
|
||||
been removed. These capabilities were deprecated on 20240313.
|
||||
|
||||
20250721: The `[pca9632]` and `[mcp4018]` modules no longer accept the
|
||||
`scl_pin` and `sda_pin` options. Use `i2c_software_scl_pin` and
|
||||
`i2c_software_sda_pin` instead.
|
||||
|
||||
20250428: The maximum `cycle_time` for pwm `[output_pin]`,
|
||||
`[pwm_cycle_time]`, `[pwm_tool]`, and similar config sections is now 3
|
||||
seconds (reduced from 5 seconds). The `maximum_mcu_duration` in
|
||||
`[pwm_tool]` is now also 3 seconds.
|
||||
|
||||
20250418: The manual_stepper `STOP_ON_ENDSTOP` feature may now take
|
||||
less time to complete. Previously, the command would wait the entire
|
||||
time the move could possibly take even if the endstop triggered
|
||||
earlier. Now, the command finishes shortly after the endstop trigger.
|
||||
|
||||
20250417: SPI devices using "software SPI" are now rate limited.
|
||||
Previously, the `spi_speed` in the config was ignored and the
|
||||
transmission speed was only limited by the processing speed of the
|
||||
micro-controller. Now, speeds are limited by the `spi_speed` config
|
||||
parameter (actual hardware speeds are likely to be lower than the
|
||||
configured value due to software overhead).
|
||||
|
||||
20250411: Klipper v0.13.0 released.
|
||||
|
||||
20250308: The `AUTO` parameter of the
|
||||
`AXIS_TWIST_COMPENSATION_CALIBRATE` command has been removed.
|
||||
|
||||
20250131: Option `VARIABLE=<name>` in `SAVE_VARIABLE` requires lowercase
|
||||
value. For example, `extruder` instead of mixedcase `Extruder` or
|
||||
uppercase `EXTRUDER`. Using any uppercase letter will raise an error.
|
||||
|
||||
20241203: The resonance test has been changed to include slow sweeping
|
||||
moves. This change requires that testing point(s) have some clearance
|
||||
in X/Y plane (+/- 30 mm from the test point should suffice when using
|
||||
@@ -32,7 +67,7 @@ object were issued faster than the minimum scheduling time (typically
|
||||
100ms) then actual updates could be queued far into the future. Now if
|
||||
many updates are issued in rapid succession then it is possible that
|
||||
only the latest request will be applied. If the previous behavior is
|
||||
requried then consider adding explicit `G4` delay commands between
|
||||
required then consider adding explicit `G4` delay commands between
|
||||
updates.
|
||||
|
||||
20240912: Support for `maximum_mcu_duration` and `static_value`
|
||||
@@ -105,7 +140,7 @@ carriage are exported as `printer.dual_carriage.carriage_0` and
|
||||
`printer.dual_carriage.carriage_1`.
|
||||
|
||||
20230619: The `relative_reference_index` option has been deprecated
|
||||
and superceded by the `zero_reference_position` option. Refer to the
|
||||
and superseded by the `zero_reference_position` option. Refer to the
|
||||
[Bed Mesh Documentation](./Bed_Mesh.md#the-deprecated-relative_reference_index)
|
||||
for details on how to update the configuration. With this deprecation
|
||||
the `RELATIVE_REFERENCE_INDEX` is no longer available as a parameter
|
||||
@@ -339,7 +374,7 @@ endstop phases by running the ENDSTOP_PHASE_CALIBRATE command.
|
||||
`gear_ratio` for their rotary steppers, and they may no longer specify
|
||||
a `step_distance` parameter. See the
|
||||
[config reference](Config_Reference.md#stepper) for the format of the
|
||||
new gear_ratio paramter.
|
||||
new gear_ratio parameter.
|
||||
|
||||
20201213: It is not valid to specify a Z "position_endstop" when using
|
||||
"probe:z_virtual_endstop". An error will now be raised if a Z
|
||||
|
||||
@@ -84,8 +84,9 @@ The printer section controls high level printer settings.
|
||||
[printer]
|
||||
kinematics:
|
||||
# The type of printer in use. This option may be one of: cartesian,
|
||||
# corexy, corexz, hybrid_corexy, hybrid_corexz, rotary_delta, delta,
|
||||
# deltesian, polar, winch, or none. This parameter must be specified.
|
||||
# corexy, corexz, hybrid_corexy, hybrid_corexz, generic_cartesian,
|
||||
# rotary_delta, delta, deltesian, polar, winch, or none.
|
||||
# This parameter must be specified.
|
||||
max_velocity:
|
||||
# Maximum velocity (in mm/s) of the toolhead (relative to the
|
||||
# print). This value may be changed at runtime using the
|
||||
@@ -125,8 +126,6 @@ max_accel:
|
||||
# decelerate to zero at each corner. The value specified here may be
|
||||
# changed at runtime using the SET_VELOCITY_LIMIT command. The
|
||||
# default is 5mm/s.
|
||||
#max_accel_to_decel:
|
||||
# This parameter is deprecated and should no longer be used.
|
||||
```
|
||||
|
||||
### [stepper]
|
||||
@@ -712,6 +711,171 @@ anchor_z:
|
||||
# These parameters must be provided.
|
||||
```
|
||||
|
||||
### Generic Cartesian Kinematics
|
||||
|
||||
See [example-generic-cartesian.cfg](../config/example-generic-caretesian.cfg)
|
||||
for an example generic Cartesian kinematics config file.
|
||||
|
||||
This printer kinematic class allows a user to define in a pretty flexible
|
||||
manner an arbitrary Cartesian-style kinematics. In principle, the regular
|
||||
cartesian, corexy, hybrid_corexy can be defined this way too. However,
|
||||
more importantly, various otherwise unsupported kinematics such as
|
||||
inverted hybrid_corexy or corexyuv can be defined using this kinematic.
|
||||
|
||||
Notably, the definition of a generic Cartesian kinematic deviates
|
||||
significantly from the other kinematic types. It follows the following
|
||||
convention: a user defines a set of carriages with certain range of motion
|
||||
that can move independently from each other (they should move over the
|
||||
Cartesian axes X, Y, and Z, hence the name of the kinematic) and
|
||||
corresponding endstops that allow the firmware to determine the position
|
||||
of carriages during homing, as well as a set of steppers that move those
|
||||
carriages. The `[printer]` section must specify the kinematic and
|
||||
other printer-level settings same as the regular Cartesian kinematic:
|
||||
```
|
||||
[printer]
|
||||
kinematics: generic_cartesian
|
||||
max_velocity:
|
||||
max_accel:
|
||||
#minimum_cruise_ratio:
|
||||
#square_corner_velocity:
|
||||
#max_z_velocity:
|
||||
#max_z_accel:
|
||||
|
||||
```
|
||||
|
||||
Then a user must define the following three carriages: `[carriage x]`,
|
||||
`[carriage y]`, and `[carriage z]`, e.g.
|
||||
```
|
||||
[carriage x]
|
||||
endstop_pin:
|
||||
# Endstop switch detection pin. If this endstop pin is on a
|
||||
# different mcu than the stepper motor(s) moving this carriage,
|
||||
# then it enables "multi-mcu homing". This parameter must be provided.
|
||||
#position_min: 0
|
||||
# Minimum valid distance (in mm) the user may command the carriage to
|
||||
# move to. The default is 0mm.
|
||||
position_endstop:
|
||||
# Location of the endstop (in mm). This parameter must be provided.
|
||||
position_max:
|
||||
# Maximum valid distance (in mm) the user may command the stepper to
|
||||
# move to. This parameter must be provided.
|
||||
#homing_speed: 5.0
|
||||
# Maximum velocity (in mm/s) of the carriage when homing. The default
|
||||
# is 5mm/s.
|
||||
#homing_retract_dist: 5.0
|
||||
# Distance to backoff (in mm) before homing a second time during
|
||||
# homing. Set this to zero to disable the second home. The default
|
||||
# is 5mm.
|
||||
#homing_retract_speed:
|
||||
# Speed to use on the retract move after homing in case this should
|
||||
# be different from the homing speed, which is the default for this
|
||||
# parameter
|
||||
#second_homing_speed:
|
||||
# Velocity (in mm/s) of the carriage when performing the second home.
|
||||
# The default is homing_speed/2.
|
||||
#homing_positive_dir:
|
||||
# If true, homing will cause the carriage to move in a positive
|
||||
# direction (away from zero); if false, home towards zero. It is
|
||||
# better to use the default than to specify this parameter. The
|
||||
# default is true if position_endstop is near position_max and false
|
||||
# if near position_min.
|
||||
```
|
||||
|
||||
Afterwards, a user specifies the stepper motors that move these carriages,
|
||||
for instance
|
||||
```
|
||||
[stepper my_stepper]
|
||||
carriages:
|
||||
# A string describing the carriages the stepper moves. All defined
|
||||
# carriages can be specified here, as well as their linear combinations,
|
||||
# e.g. x, x+y, y-0.5*z, x-z, etc. This parameter must be provided.
|
||||
step_pin:
|
||||
dir_pin:
|
||||
enable_pin:
|
||||
rotation_distance:
|
||||
microsteps:
|
||||
#full_steps_per_rotation: 200
|
||||
#gear_ratio:
|
||||
#step_pulse_duration:
|
||||
```
|
||||
See [stepper](#stepper) section for more information on the regular
|
||||
stepper parameters. The `carriages` parameter defines how the stepper
|
||||
affects the motion of the carriages. For example, `x+y` indicates that
|
||||
the motion of the stepper in the positive direction by the distance `d`
|
||||
moves the carriages `x` and `y` by the same distance `d` in the positive
|
||||
direction, while `x-0.5*y` means the motion of the stepper in the positive
|
||||
direction by the distance `d` moves the carriage `x` by the distance `d`
|
||||
in the positive direction, but the carriage `y` will travel distance `d/2`
|
||||
in the negative direction.
|
||||
|
||||
More than a single stepper motor can be defined to drive the same axis
|
||||
or belt. For example, on a CoreXY AWD setups two motors driving the same
|
||||
belt can be defined as
|
||||
```
|
||||
[carriage x]
|
||||
endstop_pin: ...
|
||||
...
|
||||
|
||||
[carriage y]
|
||||
endstop_pin: ...
|
||||
...
|
||||
|
||||
[stepper a0]
|
||||
carriages: x-y
|
||||
step_pin: ...
|
||||
dir_pin: ...
|
||||
enable_pin: ...
|
||||
rotation_distance: ...
|
||||
...
|
||||
|
||||
[stepper a1]
|
||||
carriages: x-y
|
||||
step_pin: ...
|
||||
dir_pin: ...
|
||||
enable_pin: ...
|
||||
rotation_distance: ...
|
||||
...
|
||||
```
|
||||
with `a0` and `a1` steppers having their own control pins, but
|
||||
sharing the same `carriages` and corresponding endstops.
|
||||
|
||||
There are situations when a user wants to have more than one endstop
|
||||
per axis. Examples of such configurations include Y axis driven by
|
||||
two independent stepper motors with belts attached to both ends of the
|
||||
X beam, with effectively two carriages on Y axis each having an
|
||||
independent endstop, and multi-stepper Z axis with each stepper having
|
||||
its own endstop (not to be confused with the configurations with
|
||||
multiple Z motors but only a single endstop). These configurations
|
||||
can be declared by specifying additional carriage(s) with their endstops:
|
||||
|
||||
```
|
||||
[extra_carriage my_carriage]
|
||||
primary_carriage:
|
||||
# The name of the primary carriage this carriage corresponds to.
|
||||
# It also effectively defines the axis the carriage moves over.
|
||||
# This parameter must be provided.
|
||||
endstop_pin:
|
||||
# Endstop switch detection pin. This parameter must be provided.
|
||||
```
|
||||
|
||||
and the corresponding stepper motors, for example:
|
||||
```
|
||||
[extra_carriage y1]
|
||||
primary_carriage: y
|
||||
endstop_pin: ...
|
||||
|
||||
[stepper sy1]
|
||||
carriages: y1
|
||||
...
|
||||
```
|
||||
Notably, an `[extra_carriage]` does not define parameters such as
|
||||
`position_min`, `position_max`, and `position_endstop`, but instead
|
||||
inherits them from the specified `primary_carriage`, thus sharing
|
||||
the same range of motion with the primary carriage.
|
||||
|
||||
For the references on how to configure IDEX setups, see the
|
||||
[dual carriage](#dual-carriage) section.
|
||||
|
||||
### None Kinematics
|
||||
|
||||
It is possible to define a special "none" kinematics to disable
|
||||
@@ -1669,6 +1833,25 @@ cs_pin:
|
||||
# measurements.
|
||||
```
|
||||
|
||||
### [icm20948]
|
||||
|
||||
Support for icm20948 accelerometers.
|
||||
|
||||
```
|
||||
[icm20948]
|
||||
#i2c_address:
|
||||
# Default is 104 (0x68). If AD0 is high, it would be 0x69 instead.
|
||||
#i2c_mcu:
|
||||
#i2c_bus:
|
||||
#i2c_software_scl_pin:
|
||||
#i2c_software_sda_pin:
|
||||
#i2c_speed: 400000
|
||||
# See the "common I2C settings" section for a description of the
|
||||
# above parameters. The default "i2c_speed" is 400000.
|
||||
#axes_map: x, y, z
|
||||
# See the "adxl345" section for information on this parameter.
|
||||
```
|
||||
|
||||
### [lis2dw]
|
||||
|
||||
Support for LIS2DW accelerometers.
|
||||
@@ -2065,6 +2248,9 @@ Support for eddy current inductive probes. One may define this section
|
||||
sensor_type: ldc1612
|
||||
# The sensor chip used to perform eddy current measurements. This
|
||||
# parameter must be provided and must be set to ldc1612.
|
||||
#frequency:
|
||||
# The external crystal frequency (in Hz) of the LDC1612 chip.
|
||||
# The default is 12000000.
|
||||
#intb_pin:
|
||||
# MCU gpio pin connected to the ldc1612 sensor's INTB pin (if
|
||||
# available). The default is to not use the INTB pin.
|
||||
@@ -2185,8 +2371,8 @@ for an example configuration.
|
||||
|
||||
### [dual_carriage]
|
||||
|
||||
Support for cartesian and hybrid_corexy/z printers with dual carriages
|
||||
on a single axis. The carriage mode can be set via the
|
||||
Support for cartesian, generic_cartesian and hybrid_corexy/z printers with
|
||||
dual carriages on a single axis. The carriage mode can be set via the
|
||||
SET_DUAL_CARRIAGE extended g-code command. For example,
|
||||
"SET_DUAL_CARRIAGE CARRIAGE=1" command will activate the carriage defined
|
||||
in this section (CARRIAGE=0 will return activation to the primary carriage).
|
||||
@@ -2213,7 +2399,7 @@ typically be achieved with
|
||||
or a similar command.
|
||||
|
||||
See [sample-idex.cfg](../config/sample-idex.cfg) for an example
|
||||
configuration.
|
||||
configuration with a regular Cartesian kinematic.
|
||||
|
||||
```
|
||||
[dual_carriage]
|
||||
@@ -2227,7 +2413,7 @@ axis:
|
||||
# error. If safe_distance is not provided, it will be inferred from
|
||||
# position_min and position_max for the dual and primary carriages. If set
|
||||
# to 0 (or safe_distance is unset and position_min and position_max are
|
||||
# identical for the primary and dual carraiges), the carriages proximity
|
||||
# identical for the primary and dual carriages), the carriages proximity
|
||||
# checks will be disabled.
|
||||
#step_pin:
|
||||
#dir_pin:
|
||||
@@ -2241,6 +2427,83 @@ axis:
|
||||
# See the "stepper" section for the definition of the above parameters.
|
||||
```
|
||||
|
||||
For an example of dual carriage configuration with `generic_cartesian`
|
||||
kinematic, see the following configuration
|
||||
[sample](../config/example-generic-caretesian.cfg).
|
||||
Please note that in this case the `[dual_carriage]` configuration deviates
|
||||
from the configuration described above:
|
||||
```
|
||||
[dual_carriage my_dc_carriage]
|
||||
primary_carriage:
|
||||
# Defines the matching primary carriage of this dual carriage and
|
||||
# the corresponding IDEX axis. Valid choices are x, y, z.
|
||||
# This parameter must be provided.
|
||||
#safe_distance:
|
||||
# The minimum distance (in mm) to enforce between the dual and the primary
|
||||
# carriages. If a G-Code command is executed that will bring the carriages
|
||||
# closer than the specified limit, such a command will be rejected with an
|
||||
# error. If safe_distance is not provided, it will be inferred from
|
||||
# position_min and position_max for the dual and primary carriages. If set
|
||||
# to 0 (or safe_distance is unset and position_min and position_max are
|
||||
# identical for the primary and dual carriages), the carriages proximity
|
||||
# checks will be disabled.
|
||||
endstop_pin:
|
||||
#position_min:
|
||||
position_endstop:
|
||||
position_max:
|
||||
#homing_speed:
|
||||
#homing_retract_dist:
|
||||
#homing_retract_speed:
|
||||
#second_homing_speed:
|
||||
#homing_positive_dir:
|
||||
...
|
||||
```
|
||||
Refer to [generic cartesian](#generic-cartesian) section for more information
|
||||
on the regular `carriage` parameters.
|
||||
|
||||
Then a user must define one or more stepper motors moving the dual carriage
|
||||
(and other carriages as appropriate), for instance
|
||||
```
|
||||
[carriage x]
|
||||
...
|
||||
|
||||
[carriage y]
|
||||
...
|
||||
|
||||
[dual_carriage u]
|
||||
primary_carriage: x
|
||||
...
|
||||
|
||||
[stepper dc_stepper]
|
||||
carriages: u-y
|
||||
...
|
||||
```
|
||||
|
||||
`[dual_carriage]` requires special configuration for the input shaper.
|
||||
In general, it is necessary to run input shaper calibration twice -
|
||||
for the `dual_carriage` and its `primary_carriage` for the axis they
|
||||
share. Then the input shaper can be configured as follows, assuming the
|
||||
example above:
|
||||
```
|
||||
[input_shaper]
|
||||
# Intentionally empty
|
||||
|
||||
[delayed_gcode init_shaper]
|
||||
initial_duration: 0.1
|
||||
gcode:
|
||||
SET_DUAL_CARRIAGE CARRIAGE=u
|
||||
SET_INPUT_SHAPER SHAPER_TYPE_X=<dual_carriage_x_shaper> SHAPER_FREQ_X=<dual_carriage_x_freq> SHAPER_TYPE_Y=<y_shaper> SHAPER_FREQ_Y=<y_freq>
|
||||
SET_DUAL_CARRIAGE CARRIAGE=x
|
||||
SET_INPUT_SHAPER SHAPER_TYPE_X=<primary_carriage_x_shaper> SHAPER_FREQ_X=<primary_carriage_x_freq> SHAPER_TYPE_Y=<y_shaper> SHAPER_FREQ_Y=<y_freq>
|
||||
```
|
||||
Note that `SHAPER_TYPE_Y` and `SHAPER_FREQ_Y` must be the same in both
|
||||
commands in this case, since the same motors drive Y axis when either
|
||||
of the `x` and `u` carriages are active.
|
||||
|
||||
It is worth noting that `generic_cartesian` kinematic can support two
|
||||
dual carriages for X and Y axes. For reference, see for instance a
|
||||
[sample](../config/sample-corexyuv.cfg) of CoreXYUV configuration.
|
||||
|
||||
### [extruder_stepper]
|
||||
|
||||
Support for additional steppers synchronized to the movement of an
|
||||
@@ -2295,6 +2558,13 @@ printer kinematics.
|
||||
# Endstop switch detection pin. If specified, then one may perform
|
||||
# "homing moves" by adding a STOP_ON_ENDSTOP parameter to
|
||||
# MANUAL_STEPPER movement commands.
|
||||
#position_min:
|
||||
#position_max:
|
||||
# The minimum and maximum position the stepper can be commanded to
|
||||
# move to. If specified then one may not command the stepper to move
|
||||
# past the given position. Note that these limits do not prevent
|
||||
# setting an arbitrary position with the `MANUAL_STEPPER
|
||||
# SET_POSITION=x` command. The default is to not enforce a limit.
|
||||
```
|
||||
|
||||
## Custom heaters and sensors
|
||||
@@ -3204,11 +3474,6 @@ PCA9632 LED support. The PCA9632 is used on the FlashForge Dreamer.
|
||||
#i2c_speed:
|
||||
# See the "common I2C settings" section for a description of the
|
||||
# above parameters.
|
||||
#scl_pin:
|
||||
#sda_pin:
|
||||
# Alternatively, if the pca9632 is not connected to a hardware I2C
|
||||
# bus, then one may specify the "clock" (scl_pin) and "data"
|
||||
# (sda_pin) pins. The default is to use hardware I2C.
|
||||
#color_order: RGBW
|
||||
# Set the pixel order of the LED (using a string containing the
|
||||
# letters R, G, B, W). The default is RGBW.
|
||||
@@ -3278,6 +3543,10 @@ pin:
|
||||
# A list of G-Code commands to execute when the button is released.
|
||||
# G-Code templates are supported. The default is to not run any
|
||||
# commands on a button release.
|
||||
#debounce_delay:
|
||||
# A period of time in seconds to debounce events prior to running the
|
||||
# button gcode. If the button is pressed and released during this
|
||||
# delay, the entire button press is ignored. Default is 0.
|
||||
```
|
||||
|
||||
### [output_pin]
|
||||
@@ -3456,8 +3725,9 @@ run_current:
|
||||
#stealthchop_threshold: 0
|
||||
# The velocity (in mm/s) to set the "stealthChop" threshold to. When
|
||||
# set, "stealthChop" mode will be enabled if the stepper motor
|
||||
# velocity is below this value. The default is 0, which disables
|
||||
# "stealthChop" mode.
|
||||
# velocity is below this value. Note that the "sensorless homing"
|
||||
# code may temporarily override this setting during homing
|
||||
# operations. The default is 0, which disables "stealthChop" mode.
|
||||
#coolstep_threshold:
|
||||
# The velocity (in mm/s) to set the TMC driver internal "CoolStep"
|
||||
# threshold to. If set, the coolstep feature will be enabled when
|
||||
@@ -3506,6 +3776,7 @@ run_current:
|
||||
#driver_PWM_FREQ: 1
|
||||
#driver_PWM_GRAD: 4
|
||||
#driver_PWM_AMPL: 128
|
||||
#driver_FREEWHEEL: 0
|
||||
#driver_SGT: 0
|
||||
#driver_SEMIN: 0
|
||||
#driver_SEUP: 0
|
||||
@@ -3569,8 +3840,9 @@ run_current:
|
||||
#stealthchop_threshold: 0
|
||||
# The velocity (in mm/s) to set the "stealthChop" threshold to. When
|
||||
# set, "stealthChop" mode will be enabled if the stepper motor
|
||||
# velocity is below this value. The default is 0, which disables
|
||||
# "stealthChop" mode.
|
||||
# velocity is below this value. Note that the "sensorless homing"
|
||||
# code may temporarily override this setting during homing
|
||||
# operations. The default is 0, which disables "stealthChop" mode.
|
||||
#driver_MULTISTEP_FILT: True
|
||||
#driver_IHOLDDELAY: 8
|
||||
#driver_TPOWERDOWN: 20
|
||||
@@ -3585,6 +3857,7 @@ run_current:
|
||||
#driver_PWM_FREQ: 1
|
||||
#driver_PWM_GRAD: 14
|
||||
#driver_PWM_OFS: 36
|
||||
#driver_FREEWHEEL: 0
|
||||
# Set the given register during the configuration of the TMC2208
|
||||
# chip. This may be used to set custom motor parameters. The
|
||||
# defaults for each parameter are next to the parameter name in the
|
||||
@@ -3634,6 +3907,7 @@ run_current:
|
||||
#driver_PWM_FREQ: 1
|
||||
#driver_PWM_GRAD: 14
|
||||
#driver_PWM_OFS: 36
|
||||
#driver_FREEWHEEL: 0
|
||||
#driver_SGTHRS: 0
|
||||
#driver_SEMIN: 0
|
||||
#driver_SEUP: 0
|
||||
@@ -3772,8 +4046,9 @@ run_current:
|
||||
#stealthchop_threshold: 0
|
||||
# The velocity (in mm/s) to set the "stealthChop" threshold to. When
|
||||
# set, "stealthChop" mode will be enabled if the stepper motor
|
||||
# velocity is below this value. The default is 0, which disables
|
||||
# "stealthChop" mode.
|
||||
# velocity is below this value. Note that the "sensorless homing"
|
||||
# code may temporarily override this setting during homing
|
||||
# operations. The default is 0, which disables "stealthChop" mode.
|
||||
#coolstep_threshold:
|
||||
# The velocity (in mm/s) to set the TMC driver internal "CoolStep"
|
||||
# threshold to. If set, the coolstep feature will be enabled when
|
||||
@@ -3906,8 +4181,9 @@ run_current:
|
||||
#stealthchop_threshold: 0
|
||||
# The velocity (in mm/s) to set the "stealthChop" threshold to. When
|
||||
# set, "stealthChop" mode will be enabled if the stepper motor
|
||||
# velocity is below this value. The default is 0, which disables
|
||||
# "stealthChop" mode.
|
||||
# velocity is below this value. Note that the "sensorless homing"
|
||||
# code may temporarily override this setting during homing
|
||||
# operations. The default is 0, which disables "stealthChop" mode.
|
||||
#coolstep_threshold:
|
||||
# The velocity (in mm/s) to set the TMC driver internal "CoolStep"
|
||||
# threshold to. If set, the coolstep feature will be enabled when
|
||||
@@ -4113,16 +4389,21 @@ prefix).
|
||||
|
||||
### [mcp4018]
|
||||
|
||||
Statically configured MCP4018 digipot connected via two gpio "bit
|
||||
banging" pins (one may define any number of sections with an "mcp4018"
|
||||
prefix).
|
||||
Statically configured MCP4018 digipot connected via i2c (one may
|
||||
define any number of sections with an "mcp4018" prefix).
|
||||
|
||||
```
|
||||
[mcp4018 my_digipot]
|
||||
scl_pin:
|
||||
# The SCL "clock" pin. This parameter must be provided.
|
||||
sda_pin:
|
||||
# The SDA "data" pin. This parameter must be provided.
|
||||
#i2c_address: 47
|
||||
# The i2c address that the chip is using on the i2c bus. The default
|
||||
# is 47.
|
||||
#i2c_mcu:
|
||||
#i2c_bus:
|
||||
#i2c_software_scl_pin:
|
||||
#i2c_software_sda_pin:
|
||||
#i2c_speed:
|
||||
# See the "common I2C settings" section for a description of the
|
||||
# above parameters.
|
||||
wiper:
|
||||
# The value to statically set the given MCP4018 "wiper" to. This is
|
||||
# typically set to a number between 0.0 and 1.0 with 1.0 being the
|
||||
@@ -4637,6 +4918,11 @@ more information.
|
||||
# dispatch and execution of the runout_gcode. It may be useful to
|
||||
# increase this delay if OctoPrint exhibits strange pause behavior.
|
||||
# Default is 0.5 seconds.
|
||||
#debounce_delay:
|
||||
# A period of time in seconds to debounce events prior to running the
|
||||
# switch gcode. The switch must he held in a single state for at least
|
||||
# this long to activate. If the switch is toggled on/off during this delay,
|
||||
# the event is ignored. Default is 0.
|
||||
#switch_pin:
|
||||
# The pin on which the switch is connected. This parameter must be
|
||||
# provided.
|
||||
@@ -4754,6 +5040,16 @@ scale.
|
||||
[load_cell]
|
||||
sensor_type:
|
||||
# This must be one of the supported sensor types, see below.
|
||||
#counts_per_gram:
|
||||
# The floating point number of sensor counts that indicates 1 gram of force.
|
||||
# This value is calculated by the LOAD_CELL_CALIBRATE command.
|
||||
#reference_tare_counts:
|
||||
# The integer tare value, in raw sensor counts, taken when LOAD_CELL_CALIBRATE
|
||||
# is run. This is the default tare value when klipper starts up.
|
||||
#sensor_orientation:
|
||||
# Change the sensor's orientation. Can be either 'normal' or 'inverted'.
|
||||
# The default is 'normal'. Use 'inverted' if the sensor reports a
|
||||
# decreasing force value when placed under load.
|
||||
```
|
||||
|
||||
#### HX711
|
||||
@@ -4850,6 +5146,65 @@ data_ready_pin:
|
||||
# and 'analog_supply'. Default is 'internal'.
|
||||
```
|
||||
|
||||
### [load_cell_probe]
|
||||
Load Cell Probe. This combines the functionality of a [probe] and a [load_cell].
|
||||
|
||||
```
|
||||
[load_cell_probe]
|
||||
sensor_type:
|
||||
# This must be one of the supported bulk ADC sensor types and support
|
||||
# load cell endstops on the mcu.
|
||||
#counts_per_gram:
|
||||
#reference_tare_counts:
|
||||
#sensor_orientation:
|
||||
# These parameters must be configured before the probe will operate.
|
||||
# See the [load_cell] section for further details.
|
||||
#force_safety_limit: 2000
|
||||
# The safe limit for probing force relative to the reference_tare_counts on
|
||||
# the load_cell. The default is +/-2Kg.
|
||||
#trigger_force: 75.0
|
||||
# The force that the probe will trigger at. 75g is the default.
|
||||
#drift_filter_cutoff_frequency: 0.8
|
||||
# Enable optional continuous taring while homing & probing to reject drift.
|
||||
# The value is a frequency, in Hz, below which drift will be ignored. This
|
||||
# option requires the SciPy library. Default: None
|
||||
#drift_filter_delay: 2
|
||||
# The delay, or 'order', of the drift filter. This controls the number of
|
||||
# samples required to make a trigger detection. Can be 1 or 2, the default
|
||||
# is 2.
|
||||
#buzz_filter_cutoff_frequency: 100.0
|
||||
# The value is a frequency, in Hz, above which high frequency noise in the
|
||||
# load cell will be igfiltered outnored. This option requires the SciPy
|
||||
# library. Default: None
|
||||
#buzz_filter_delay: 2
|
||||
# The delay, or 'order', of the buzz filter. This controls the number of
|
||||
# samples required to make a trigger detection. Can be 1 or 2, the default
|
||||
# is 2.
|
||||
#notch_filter_frequencies: 50, 60
|
||||
# 1 or 2 frequencies, in Hz, to filter out of the load cell data. This is
|
||||
# intended to reject power line noise. This option requires the SciPy
|
||||
# library. Default: None
|
||||
#notch_filter_quality: 2.0
|
||||
# Controls how narrow the range of frequencies are that the notch filter
|
||||
# removes. Larger numbers produce a narrower filter. Minimum value is 0.5 and
|
||||
# maximum is 3.0. Default: 2.0
|
||||
#tare_time:
|
||||
# The rime in seconds used for taring the load_cell before each probe. The
|
||||
# default value is: 4 / 60 = 0.066. This collects samples from 4 cycles of
|
||||
# 60Hz mains power to cancel power line noise.
|
||||
#z_offset:
|
||||
#speed:
|
||||
#samples:
|
||||
#sample_retract_dist:
|
||||
#lift_speed:
|
||||
#samples_result:
|
||||
#samples_tolerance:
|
||||
#samples_tolerance_retries:
|
||||
#activate_gcode:
|
||||
#deactivate_gcode:
|
||||
# See the "[probe]" section for a description of the above parameters.
|
||||
```
|
||||
|
||||
## Board specific hardware support
|
||||
|
||||
### [sx1509]
|
||||
@@ -4956,7 +5311,7 @@ chip: ADS1115
|
||||
# scales all values read from the ADC. Options are: 6.144V, 4.096V, 2.048V,
|
||||
# 1.024V, 0.512V, 0.256V
|
||||
#adc_voltage: 3.3
|
||||
# The suppy voltage for the device. This allows additional software scaling
|
||||
# The supply voltage for the device. This allows additional software scaling
|
||||
# for all values read from the ADC.
|
||||
i2c_mcu: host
|
||||
i2c_bus: i2c.1
|
||||
@@ -4975,7 +5330,7 @@ sensor_pin: my_ads1x1x:AIN0
|
||||
# A combination of the name of the ads1x1x chip and the pin. Possible
|
||||
# pin values are AIN0, AIN1, AIN2 and AIN3 for single ended lines and
|
||||
# DIFF01, DIFF03, DIFF13 and DIFF23 for differential between their
|
||||
# correspoding lines. For example
|
||||
# corresponding lines. For example
|
||||
# DIFF03 measures the differential between line 0 and 3. Only specific
|
||||
# combinations for the differentials are allowed.
|
||||
```
|
||||
@@ -5061,7 +5416,7 @@ Octoprint as they will conflict, and 1 will fail to initialize
|
||||
properly likely aborting your print.
|
||||
|
||||
If you use Octoprint and stream gcode over the serial port instead of
|
||||
printing from virtual_sd, then remo **M1** and **M0** from *Pausing commands*
|
||||
printing from virtual_sd, then remove **M1** and **M0** from *Pausing commands*
|
||||
in *Settings > Serial Connection > Firmware & protocol* will prevent
|
||||
the need to start print on the Palette 2 and unpausing in Octoprint
|
||||
for your print to begin.
|
||||
|
||||
@@ -102,11 +102,13 @@ Klipper supports many standard 3d printer features:
|
||||
printers.
|
||||
|
||||
* Automatic bed leveling support. Klipper can be configured for basic
|
||||
bed tilt detection or full mesh bed leveling. If the bed uses
|
||||
bed tilt detection or full mesh bed leveling. The bed mesh can be
|
||||
customized to the print size (adaptive bed mesh). If the bed uses
|
||||
multiple Z steppers then Klipper can also level by independently
|
||||
manipulating the Z steppers. Most Z height probes are supported,
|
||||
including BL-Touch probes and servo activated probes. Probes may be
|
||||
calibrated for axis twist compensation.
|
||||
calibrated for axis twist compensation. If using an "eddy current
|
||||
probe" then one can utilize fast bed mesh scanning,
|
||||
|
||||
* Automatic delta calibration support. The calibration tool can
|
||||
perform basic height calibration as well as an enhanced X and Y
|
||||
@@ -118,7 +120,7 @@ Klipper supports many standard 3d printer features:
|
||||
|
||||
* Support for common temperature sensors (eg, common thermistors,
|
||||
AD595, AD597, AD849x, PT100, PT1000, MAX6675, MAX31855, MAX31856,
|
||||
MAX31865, BME280, HTU21D, DS18B20, AHT10, and LM75). Custom
|
||||
MAX31865, BME280, HTU21D, DS18B20, AHT10, SHT3x, and LM75). Custom
|
||||
thermistors and custom analog temperature sensors can also be
|
||||
configured. One can monitor the internal micro-controller
|
||||
temperature sensor and the internal temperature sensor of a
|
||||
@@ -128,7 +130,8 @@ Klipper supports many standard 3d printer features:
|
||||
|
||||
* Support for standard fans, nozzle fans, and temperature controlled
|
||||
fans. No need to keep fans running when the printer is idle. Fan
|
||||
speed can be monitored on fans that have a tachometer.
|
||||
speed can be monitored on fans that have a tachometer. One can
|
||||
assign a "math formula" to a fan for automatic fan speed updating.
|
||||
|
||||
* Support for run-time configuration of TMC2130, TMC2208/TMC2224,
|
||||
TMC2209, TMC2240, TMC2660, and TMC5160 stepper motor drivers. There
|
||||
@@ -154,7 +157,7 @@ Klipper supports many standard 3d printer features:
|
||||
filament width sensors.
|
||||
|
||||
* Support for measuring and recording acceleration using adxl345,
|
||||
mpu9250, mpu6050, and lis2dw12 accelerometers.
|
||||
mpu9250, mpu6050, lis2dw12, lis3dh, and icm20948 accelerometers.
|
||||
|
||||
* Support for limiting the top speed of short "zigzag" moves to reduce
|
||||
printer vibration and noise. See the [kinematics](Kinematics.md)
|
||||
@@ -184,15 +187,16 @@ represent total number of steps per second on the micro-controller.
|
||||
| SAM4S8C | 1690K | 1385K |
|
||||
| LPC1768 | 1923K | 1351K |
|
||||
| LPC1769 | 2353K | 1622K |
|
||||
| RP2040 | 2400K | 1636K |
|
||||
| SAM4E8E | 2500K | 1674K |
|
||||
| SAMD51 | 3077K | 1885K |
|
||||
| AR100 | 3529K | 2507K |
|
||||
| STM32G431 | 3617K | 2452K |
|
||||
| STM32F407 | 3652K | 2459K |
|
||||
| STM32F446 | 3913K | 2634K |
|
||||
| RP2040 | 4000K | 2571K |
|
||||
| RP2350 | 4167K | 2663K |
|
||||
| SAME70 | 6667K | 4737K |
|
||||
| STM32H743 | 9091K | 6061K |
|
||||
| STM32H723 | 7429K | 8619K |
|
||||
|
||||
If unsure of the micro-controller on a particular board, find the
|
||||
appropriate [config file](../config/), and look for the
|
||||
|
||||
405
docs/G-Codes.md
405
docs/G-Codes.md
@@ -154,8 +154,7 @@ The following commands are available when the
|
||||
section](Config_Reference.md#axis_twist_compensation) is enabled.
|
||||
|
||||
#### AXIS_TWIST_COMPENSATION_CALIBRATE
|
||||
`AXIS_TWIST_COMPENSATION_CALIBRATE [AXIS=<X|Y>] [AUTO=<True|False>]
|
||||
[SAMPLE_COUNT=<value>]`
|
||||
`AXIS_TWIST_COMPENSATION_CALIBRATE [AXIS=<X|Y>] [SAMPLE_COUNT=<value>]`
|
||||
|
||||
Calibrates axis twist compensation by specifying the target axis or
|
||||
enabling automatic calibration.
|
||||
@@ -163,11 +162,6 @@ enabling automatic calibration.
|
||||
- **AXIS:** Define the axis (`X` or `Y`) for which the twist compensation
|
||||
will be calibrated. If not specified, the axis defaults to `'X'`.
|
||||
|
||||
- **AUTO:** Enables automatic calibration mode. When `AUTO=True`, the
|
||||
calibration will run for both the X and Y axes. In this mode, `AXIS`
|
||||
cannot be specified. If both `AXIS` and `AUTO` are provided, an error
|
||||
will be raised.
|
||||
|
||||
### [bed_mesh]
|
||||
|
||||
The following commands are available when the
|
||||
@@ -180,8 +174,10 @@ The following commands are available when the
|
||||
[ADAPTIVE_MARGIN=<value>]`: This command probes the bed using generated points
|
||||
specified by the parameters in the config. After probing, a mesh is generated
|
||||
and z-movement is adjusted according to the mesh.
|
||||
The mesh is immediately active after successful completion of `BED_MESH_CALIBRATE`.
|
||||
The mesh will be saved into a profile specified by the `PROFILE` parameter,
|
||||
or `default` if unspecified.
|
||||
or `default` if unspecified. If ADAPTIVE=1 is specified then the profile
|
||||
name will begin with `adaptive-` and should not be saved for reuse.
|
||||
See the PROBE command for details on the optional probe parameters. If
|
||||
METHOD=manual is specified then the manual probing tool is activated - see the
|
||||
MANUAL_PROBE command above for details on the additional commands available
|
||||
@@ -347,15 +343,18 @@ The following command is available when the
|
||||
enabled.
|
||||
|
||||
#### SET_DUAL_CARRIAGE
|
||||
`SET_DUAL_CARRIAGE CARRIAGE=[0|1] [MODE=[PRIMARY|COPY|MIRROR]]`:
|
||||
`SET_DUAL_CARRIAGE CARRIAGE=<carriage> [MODE=[PRIMARY|COPY|MIRROR]]`:
|
||||
This command will change the mode of the specified carriage.
|
||||
If no `MODE` is provided it defaults to `PRIMARY`. Setting the mode
|
||||
to `PRIMARY` deactivates the other carriage and makes the specified
|
||||
carriage execute subsequent G-Code commands as-is. `COPY` and `MIRROR`
|
||||
modes are supported only for `CARRIAGE=1`. When set to either of these
|
||||
modes, carriage 1 will then track the subsequent moves of the carriage 0
|
||||
and either copy relative movements of it (in `COPY` mode) or execute them
|
||||
in the opposite (mirror) direction (in `MIRROR` mode).
|
||||
If no `MODE` is provided it defaults to `PRIMARY`. `<carriage>` must
|
||||
reference a defined primary or dual carriage for `generic_cartesian`
|
||||
kinematics or be 0 (for primary carriage) or 1 (for dual carriage)
|
||||
for all other kinematics supporting IDEX. Setting the mode to `PRIMARY`
|
||||
deactivates the other carriage and makes the specified carriage execute
|
||||
subsequent G-Code commands as-is. `COPY` and `MIRROR` modes are supported
|
||||
only for dual carriages. When set to either of these modes, dual carriage
|
||||
will then track the subsequent moves of its primary carriage and either
|
||||
copy relative movements of it (in `COPY` mode) or execute them in the
|
||||
opposite (mirror) direction (in `MIRROR` mode).
|
||||
|
||||
#### SAVE_DUAL_CARRIAGE_STATE
|
||||
`SAVE_DUAL_CARRIAGE_STATE [NAME=<state_name>]`: Save the current positions
|
||||
@@ -373,7 +372,7 @@ restored and "MOVE_SPEED" is specified, then the toolhead moves will be
|
||||
performed with the given speed (in mm/s); otherwise the toolhead move will
|
||||
use the rail homing speed. Note that the carriages restore their positions
|
||||
only over their own axis, which may be necessary to correctly restore COPY
|
||||
and MIRROR mode of the dual carraige.
|
||||
and MIRROR mode of the dual carriage.
|
||||
|
||||
### [endstop_phase]
|
||||
|
||||
@@ -585,18 +584,51 @@ state; issue a G28 afterwards to reset the kinematics. This command is
|
||||
intended for low-level diagnostics and debugging.
|
||||
|
||||
#### SET_KINEMATIC_POSITION
|
||||
|
||||
`SET_KINEMATIC_POSITION [X=<value>] [Y=<value>] [Z=<value>]
|
||||
[CLEAR=<[X][Y][Z]>]`: Force the low-level kinematic code to believe the
|
||||
toolhead is at the given cartesian position. This is a diagnostic and
|
||||
debugging command; use SET_GCODE_OFFSET and/or G92 for regular axis
|
||||
transformations. If an axis is not specified then it will default to the
|
||||
position that the head was last commanded to. Setting an incorrect or
|
||||
invalid position may lead to internal software errors. Use the CLEAR
|
||||
parameter to forget the homing state for the given axes. Note that CLEAR
|
||||
will not override the previous functionality; if an axis is not specified
|
||||
to CLEAR it will have its kinematic position set as per above. This
|
||||
command may invalidate future boundary checks; issue a G28 afterwards to
|
||||
reset the kinematics.
|
||||
[SET_HOMED=<[X][Y][Z]>] [CLEAR_HOMED=<[X][Y][Z]>]`: Force the
|
||||
low-level kinematic code to believe the toolhead is at the given
|
||||
cartesian position and set/clear homed status. This is a diagnostic
|
||||
and debugging command; use SET_GCODE_OFFSET and/or G92 for regular
|
||||
axis transformations. Setting an incorrect or invalid position may
|
||||
lead to internal software errors.
|
||||
|
||||
The `X`, `Y`, and `Z` parameters are used to alter the low-level
|
||||
kinematic position tracking. If any of these parameters are not set
|
||||
then the position is not changed - for example `SET_KINEMATIC_POSITION
|
||||
Z=10` would set all axes as homed, set the internal Z position to 10,
|
||||
and leave the X and Y positions unchanged. Changing the internal
|
||||
position tracking is not dependent on the internal homing state - one
|
||||
may alter the position for both homed and not homed axes, and
|
||||
similarly one may set or clear the homing state of an axis without
|
||||
altering its internal position.
|
||||
|
||||
The `SET_HOMED` parameter defaults to `XYZ` which instructs the
|
||||
kinematics to consider all axes as homed. A bare
|
||||
`SET_KINEMATIC_POSITION` command will result in all axes being
|
||||
considered homed (and not change its current position). If it is not
|
||||
desired to change the state of homed axes then assign `SET_HOMED` to
|
||||
an empty string - for example:
|
||||
`SET_KINEMATIC_POSITION SET_HOMED= X=10`. It is also possible to
|
||||
request an individual axis be considered homed (eg, `SET_HOMED=X`),
|
||||
but note that non-cartesian style kinematics (such as delta
|
||||
kinematics) may not support setting an individual axis as homed.
|
||||
|
||||
The `CLEAR_HOMED` parameter instructs the kinematics to consider the
|
||||
given axes as not homed. For example, `CLEAR_HOMED=XYZ` would request
|
||||
all axes to be considered not homed (and thus require homing prior to
|
||||
movement on those axes). The default is `SET_HOMED=XYZ` even if
|
||||
`CLEAR_HOMED` is present, so the command `SET_KINEMATIC_POSITION
|
||||
CLEAR_HOMED=Z` will set X and Y as homed and clear the homing state
|
||||
for Z. Use `SET_KINEMATIC_POSITION SET_HOMED= CLEAR_HOMED=Z` if the
|
||||
goal is to clear only the Z homing state. If an axis is specified in
|
||||
neither `SET_HOMED` nor `CLEAR_HOMED` then its homing state is not
|
||||
changed and if it is specified in both then `CLEAR_HOMED` has
|
||||
precedence. It is possible to request clearing of an individual axis,
|
||||
but on non-cartesian style kinematics (such as delta kinematics) doing
|
||||
so may result in clearing the homing state of additional axes. Note
|
||||
the `CLEAR` parameter is currently an alias for the `CLEAR_HOMED`
|
||||
parameter, but this alias will be removed in the future.
|
||||
|
||||
### [gcode]
|
||||
|
||||
@@ -688,6 +720,46 @@ is specified then the toolhead move will be performed with the given
|
||||
speed (in mm/s); otherwise the toolhead move will use the restored
|
||||
g-code speed.
|
||||
|
||||
### [generic_cartesian]
|
||||
The commands in this section become automatically available when
|
||||
`kinematics: generic_cartesian` is specified as the printer kinematics.
|
||||
|
||||
#### SET_STEPPER_CARRIAGES
|
||||
`SET_STEPPER_CARRIAGES STEPPER=<stepper_name> CARRIAGES=<carriages>
|
||||
[DISABLE_CHECKS=[0|1]]`: Set or update the stepper carriages.
|
||||
`<stepper_name>` must reference an existing stepper defined in `printer.cfg`,
|
||||
and `<carriages>` describes the carriages the stepper moves. See
|
||||
[Generic Cartesian Kinematics](Config_Reference.md#generic-cartesian-kinematics)
|
||||
for a more detailed overview of the `carriages` parameter in the
|
||||
stepper configuration section. Note that it is only possible
|
||||
to change the coefficients or signs of the carriages with this
|
||||
command, but a user cannot add or remove the carriages that the stepper
|
||||
controls.
|
||||
|
||||
`SET_STEPPER_CARRIAGES` is an advanced tool, and the user is advised
|
||||
to exercise an extreme caution using it, since specifying incorrect
|
||||
configuration may physically damage the printer.
|
||||
|
||||
Note that `SET_STEPPER_CARRIAGES` performs certain internal validations
|
||||
of the new printer kinematics after the change. Keep in mind that if it
|
||||
detects an issue, it may leave printer kinematics in an invalid state.
|
||||
This means that if `SET_STEPPER_CARRIAGES` reports an error, it is unsafe
|
||||
to issue other GCode commands, and the user must inspect the error message
|
||||
and either fix the problem, or manually restore the previous stepper(s)
|
||||
configuration.
|
||||
|
||||
Since `SET_STEPPER_CARRIAGES` can update a configuration of a single
|
||||
stepper at a time, some sequences of changes can lead to invalid
|
||||
intermediate kinematic configurations, even if the final configuration
|
||||
is valid. In such cases a user can pass `DISABLE_CHECKS=1` parameters to
|
||||
all but the last command to disable intermediate checks. For example,
|
||||
if `stepper a` and `stepper b` initially have `x-y` and `x+y` carriages
|
||||
correspondingly, then the following sequence of commands will let a user
|
||||
effectively swap the carriage controls:
|
||||
`SET_STEPPER_CARRIAGES STEPPER=a CARRIAGES=x+y DISABLE_CHECKS=1`
|
||||
and `SET_STEPPER_CARRIAGES STEPPER=b CARRIAGES=x-y`, while
|
||||
still validating the final kinematics state.
|
||||
|
||||
### [hall_filament_width_sensor]
|
||||
|
||||
The following commands are available when the
|
||||
@@ -766,6 +838,116 @@ together with either of SHAPER_TYPE_X and SHAPER_TYPE_Y parameters.
|
||||
See [config reference](Config_Reference.md#input_shaper) for more
|
||||
details on each of these parameters.
|
||||
|
||||
### [led]
|
||||
|
||||
The following command is available when any of the
|
||||
[led config sections](Config_Reference.md#leds) are enabled.
|
||||
|
||||
#### SET_LED
|
||||
`SET_LED LED=<config_name> RED=<value> GREEN=<value> BLUE=<value>
|
||||
WHITE=<value> [INDEX=<index>] [TRANSMIT=0] [SYNC=1]`: This sets the
|
||||
LED output. Each color `<value>` must be between 0.0 and 1.0. The
|
||||
WHITE option is only valid on RGBW LEDs. If the LED supports multiple
|
||||
chips in a daisy-chain then one may specify INDEX to alter the color
|
||||
of just the given chip (1 for the first chip, 2 for the second,
|
||||
etc.). If INDEX is not provided then all LEDs in the daisy-chain will
|
||||
be set to the provided color. If TRANSMIT=0 is specified then the
|
||||
color change will only be made on the next SET_LED command that does
|
||||
not specify TRANSMIT=0; this may be useful in combination with the
|
||||
INDEX parameter to batch multiple updates in a daisy-chain. By
|
||||
default, the SET_LED command will sync it's changes with other ongoing
|
||||
gcode commands. This can lead to undesirable behavior if LEDs are
|
||||
being set while the printer is not printing as it will reset the idle
|
||||
timeout. If careful timing is not needed, the optional SYNC=0
|
||||
parameter can be specified to apply the changes without resetting the
|
||||
idle timeout.
|
||||
|
||||
#### SET_LED_TEMPLATE
|
||||
`SET_LED_TEMPLATE LED=<led_name> TEMPLATE=<template_name>
|
||||
[<param_x>=<literal>] [INDEX=<index>]`: Assign a
|
||||
[display_template](Config_Reference.md#display_template) to a given
|
||||
[LED](Config_Reference.md#leds). For example, if one defined a
|
||||
`[display_template my_led_template]` config section then one could
|
||||
assign `TEMPLATE=my_led_template` here. The display_template should
|
||||
produce a comma separated string containing four floating point
|
||||
numbers corresponding to red, green, blue, and white color settings.
|
||||
The template will be continuously evaluated and the LED will be
|
||||
automatically set to the resulting colors. One may set
|
||||
display_template parameters to use during template evaluation
|
||||
(parameters will be parsed as Python literals). If INDEX is not
|
||||
specified then all chips in the LED's daisy-chain will be set to the
|
||||
template, otherwise only the chip with the given index will be
|
||||
updated. If TEMPLATE is an empty string then this command will clear
|
||||
any previous template assigned to the LED (one can then use `SET_LED`
|
||||
commands to manage the LED's color settings).
|
||||
|
||||
### [load_cell]
|
||||
|
||||
The following commands are enabled if a
|
||||
[load_cell config section](Config_Reference.md#load_cell) has been enabled.
|
||||
|
||||
### LOAD_CELL_DIAGNOSTIC
|
||||
`LOAD_CELL_DIAGNOSTIC [LOAD_CELL=<config_name>]`: This command collects 10
|
||||
seconds of load cell data and reports statistics that can help you verify proper
|
||||
operation of the load cell. This command can be run on both calibrated and
|
||||
uncalibrated load cells.
|
||||
|
||||
### LOAD_CELL_CALIBRATE
|
||||
`LOAD_CELL_CALIBRATE [LOAD_CELL=<config_name>]`: Start the guided calibration
|
||||
utility. Calibration is a 3 step process:
|
||||
1. First you remove all load from the load cell and run the `TARE` command
|
||||
2. Next you apply a known load to the load cell and run the
|
||||
`CALIBRATE GRAMS=nnn` command
|
||||
3. Finally use the `ACCEPT` command to save the results
|
||||
|
||||
You can cancel the calibration process at any time with `ABORT`.
|
||||
|
||||
### LOAD_CELL_TARE
|
||||
`LOAD_CELL_TARE [LOAD_CELL=<config_name>]`: This works just like the tare button
|
||||
on digital scale. It sets the current raw reading of the load cell to be the
|
||||
zero point reference value. The response is the percentage of the sensors range
|
||||
that was read and the raw value in counts. If the load cell is calibrated a
|
||||
force in grams is also reported.
|
||||
|
||||
### LOAD_CELL_READ load_cell="name"
|
||||
`LOAD_CELL_READ [LOAD_CELL=<config_name>]`:
|
||||
This command takes a reading from the load cell. The response is the percentage
|
||||
of the sensors range that was read and the raw value in counts. If the load cell
|
||||
is calibrated a force in grams is also reported.
|
||||
|
||||
### [load_cell_probe]
|
||||
|
||||
The following commands are enabled if a
|
||||
[load_cell config section](Config_Reference.md#load_cell_probe) has been
|
||||
enabled.
|
||||
|
||||
### LOAD_CELL_TEST_TAP
|
||||
`LOAD_CELL_TEST_TAP [TAPS=<taps>] [TIMEOUT=<timeout>]`: Run a testing routine
|
||||
that reports taps on the load cell. The toolhead will not move but the load cell
|
||||
probe will sense taps just as if it was probing. This can be used as a
|
||||
sanity check to make sure that the probe works. This tool replaces
|
||||
QUERY_ENDSTOPS and QUERY_PROBE for load cell probes.
|
||||
- `TAPS`: the number of taps the tool expects
|
||||
- `TIMEOOUT`: the time, in seconds, that the tool waits for each tab before
|
||||
aborting.
|
||||
|
||||
### Load Cell Command Extensions
|
||||
Commands that perform probes, such as [`PROBE`](#probe),
|
||||
[`PROBE_ACCURACY`](#probe_accuracy),
|
||||
[`BED_MESH_CALIBRATE`](#bed_mesh_calibrate) etc. will accept additional
|
||||
parameters if a `[load_cell_probe]` is defined. The parameters override the
|
||||
corresponding settings from the
|
||||
[`[load_cell_probe]`](./Config_Reference.md#load_cell_probe) configuration:
|
||||
- `FORCE_SAFETY_LIMIT=<grams>`
|
||||
- `TRIGGER_FORCE=<grams>`
|
||||
- `DRIFT_FILTER_CUTOFF_FREQUENCY=<frequency_hz>`
|
||||
- `DRIFT_FILTER_DELAY=<1|2>`
|
||||
- `BUZZ_FILTER_CUTOFF_FREQUENCY=<frequency_hz>`
|
||||
- `BUZZ_FILTER_DELAY=<1|2>`
|
||||
- `NOTCH_FILTER_FREQUENCIES=<list of frequency_hz>`
|
||||
- `NOTCH_FILTER_QUALITY=<quality>`
|
||||
- `TARE_TIME=<seconds>`
|
||||
|
||||
### [manual_probe]
|
||||
|
||||
The manual_probe module is automatically loaded.
|
||||
@@ -822,6 +1004,25 @@ scheduled to run after the stepper move completes, however if a manual
|
||||
stepper move uses SYNC=0 then future G-Code movement commands may run
|
||||
in parallel with the stepper movement.
|
||||
|
||||
`MANUAL_STEPPER STEPPER=config_name GCODE_AXIS=[A-Z]
|
||||
[LIMIT_VELOCITY=<velocity>] [LIMIT_ACCEL=<accel>]
|
||||
[INSTANTANEOUS_CORNER_VELOCITY=<velocity>]`: If the `GCODE_AXIS`
|
||||
parameter is specified then it configures the stepper motor as an
|
||||
extra axis on `G1` move commands. For example, if one were to issue a
|
||||
`MANUAL_STEPPER ... GCODE_AXIS=R` command then one could issue
|
||||
commands like `G1 X10 Y20 R30` to move the stepper motor. The
|
||||
resulting moves will occur synchronously with the associated toolhead
|
||||
xyz movements. If the motor is associated with a `GCODE_AXIS` then
|
||||
one may no longer issue movements using the above `MANUAL_STEPPER`
|
||||
command - one may unregister the stepper with a `MANUAL_STEPPER
|
||||
... GCODE_AXIS=` command to resume manual control of the motor. The
|
||||
`LIMIT_VELOCITY` and `LIMIT_ACCEL` parameters allow one to reduce the
|
||||
speed of `G1` moves if those moves would result in a velocity or
|
||||
acceleration above the specified limits. The
|
||||
`INSTANTANEOUS_CORNER_VELOCITY` specifies the maximum instantaneous
|
||||
velocity change (in mm/s) of the motor during the junction of two
|
||||
moves (the default is 1mm/s).
|
||||
|
||||
### [mcp4018]
|
||||
|
||||
The following command is available when a
|
||||
@@ -836,49 +1037,6 @@ be between 0.0 and 1.0, unless a 'scale' is defined in the config.
|
||||
When 'scale' is defined, then this value should be between 0.0 and
|
||||
'scale'.
|
||||
|
||||
### [led]
|
||||
|
||||
The following command is available when any of the
|
||||
[led config sections](Config_Reference.md#leds) are enabled.
|
||||
|
||||
#### SET_LED
|
||||
`SET_LED LED=<config_name> RED=<value> GREEN=<value> BLUE=<value>
|
||||
WHITE=<value> [INDEX=<index>] [TRANSMIT=0] [SYNC=1]`: This sets the
|
||||
LED output. Each color `<value>` must be between 0.0 and 1.0. The
|
||||
WHITE option is only valid on RGBW LEDs. If the LED supports multiple
|
||||
chips in a daisy-chain then one may specify INDEX to alter the color
|
||||
of just the given chip (1 for the first chip, 2 for the second,
|
||||
etc.). If INDEX is not provided then all LEDs in the daisy-chain will
|
||||
be set to the provided color. If TRANSMIT=0 is specified then the
|
||||
color change will only be made on the next SET_LED command that does
|
||||
not specify TRANSMIT=0; this may be useful in combination with the
|
||||
INDEX parameter to batch multiple updates in a daisy-chain. By
|
||||
default, the SET_LED command will sync it's changes with other ongoing
|
||||
gcode commands. This can lead to undesirable behavior if LEDs are
|
||||
being set while the printer is not printing as it will reset the idle
|
||||
timeout. If careful timing is not needed, the optional SYNC=0
|
||||
parameter can be specified to apply the changes without resetting the
|
||||
idle timeout.
|
||||
|
||||
#### SET_LED_TEMPLATE
|
||||
`SET_LED_TEMPLATE LED=<led_name> TEMPLATE=<template_name>
|
||||
[<param_x>=<literal>] [INDEX=<index>]`: Assign a
|
||||
[display_template](Config_Reference.md#display_template) to a given
|
||||
[LED](Config_Reference.md#leds). For example, if one defined a
|
||||
`[display_template my_led_template]` config section then one could
|
||||
assign `TEMPLATE=my_led_template` here. The display_template should
|
||||
produce a comma separated string containing four floating point
|
||||
numbers corresponding to red, green, blue, and white color settings.
|
||||
The template will be continuously evaluated and the LED will be
|
||||
automatically set to the resulting colors. One may set
|
||||
display_template parameters to use during template evaluation
|
||||
(parameters will be parsed as Python literals). If INDEX is not
|
||||
specified then all chips in the LED's daisy-chain will be set to the
|
||||
template, otherwise only the chip with the given index will be
|
||||
updated. If TEMPLATE is an empty string then this command will clear
|
||||
any previous template assigned to the LED (one can then use `SET_LED`
|
||||
commands to manage the LED's color settings).
|
||||
|
||||
### [output_pin]
|
||||
|
||||
The following command is available when an
|
||||
@@ -941,20 +1099,6 @@ Palette 2 once the loading has been completed. This command is the
|
||||
same as pressing **Smart Load** directly on the Palette 2 screen after
|
||||
the filament load is complete.
|
||||
|
||||
### [pid_calibrate]
|
||||
|
||||
The pid_calibrate module is automatically loaded if a heater is defined
|
||||
in the config file.
|
||||
|
||||
#### PID_CALIBRATE
|
||||
`PID_CALIBRATE HEATER=<config_name> TARGET=<temperature>
|
||||
[WRITE_FILE=1]`: Perform a PID calibration test. The specified heater
|
||||
will be enabled until the specified target temperature is reached, and
|
||||
then the heater will be turned off and on for several cycles. If the
|
||||
WRITE_FILE parameter is enabled, then the file /tmp/heattest.txt will
|
||||
be created with a log of all temperature samples taken during the
|
||||
test.
|
||||
|
||||
### [pause_resume]
|
||||
|
||||
The following commands are available when the
|
||||
@@ -980,6 +1124,20 @@ the paused state is fresh for each print.
|
||||
#### CANCEL_PRINT
|
||||
`CANCEL_PRINT`: Cancels the current print.
|
||||
|
||||
### [pid_calibrate]
|
||||
|
||||
The pid_calibrate module is automatically loaded if a heater is defined
|
||||
in the config file.
|
||||
|
||||
#### PID_CALIBRATE
|
||||
`PID_CALIBRATE HEATER=<config_name> TARGET=<temperature>
|
||||
[WRITE_FILE=1]`: Perform a PID calibration test. The specified heater
|
||||
will be enabled until the specified target temperature is reached, and
|
||||
then the heater will be turned off and on for several cycles. If the
|
||||
WRITE_FILE parameter is enabled, then the file /tmp/heattest.txt will
|
||||
be created with a log of all temperature samples taken during the
|
||||
test.
|
||||
|
||||
### [print_stats]
|
||||
|
||||
The print_stats module is automatically loaded.
|
||||
@@ -1201,8 +1359,9 @@ has been enabled.
|
||||
|
||||
#### SAVE_VARIABLE
|
||||
`SAVE_VARIABLE VARIABLE=<name> VALUE=<value>`: Saves the variable to
|
||||
disk so that it can be used across restarts. All stored variables are
|
||||
loaded into the `printer.save_variables.variables` dict at startup and
|
||||
disk so that it can be used across restarts. The VARIABLE must be lowercase.
|
||||
All stored variables are loaded into the
|
||||
`printer.save_variables.variables` dict at startup and
|
||||
can be used in gcode macros. The provided VALUE is parsed as a Python
|
||||
literal.
|
||||
|
||||
@@ -1346,6 +1505,42 @@ temperature_fan. If a target is not supplied, it is set to the
|
||||
specified temperature in the config file. If speeds are not supplied,
|
||||
no change is applied.
|
||||
|
||||
### [temperature_probe]
|
||||
|
||||
The following commands are available when a
|
||||
[temperature_probe config section](Config_Reference.md#temperature_probe)
|
||||
is enabled.
|
||||
|
||||
#### TEMPERATURE_PROBE_CALIBRATE
|
||||
`TEMPERATURE_PROBE_CALIBRATE [PROBE=<probe name>] [TARGET=<value>] [STEP=<value>]`:
|
||||
Initiates probe drift calibration for eddy current based probes. The `TARGET`
|
||||
is a target temperature for the last sample. When the temperature recorded
|
||||
during a sample exceeds the `TARGET` calibration will complete. The `STEP`
|
||||
parameter sets temperature delta (in C) between samples. After a sample has
|
||||
been taken, this delta is used to schedule a call to `TEMPERATURE_PROBE_NEXT`.
|
||||
The default `STEP` is 2.
|
||||
|
||||
#### TEMPERATURE_PROBE_NEXT
|
||||
`TEMPERATURE_PROBE_NEXT`: After calibration has started this command is run to
|
||||
take the next sample. It is automatically scheduled to run when the delta
|
||||
specified by `STEP` has been reached, however its also possible to manually run
|
||||
this command to force a new sample. This command is only available during
|
||||
calibration.
|
||||
|
||||
#### TEMPERATURE_PROBE_COMPLETE:
|
||||
`TEMPERATURE_PROBE_COMPLETE`: Can be used to end calibration and save the
|
||||
current result before the `TARGET` temperature is reached. This command
|
||||
is only available during calibration.
|
||||
|
||||
#### ABORT
|
||||
`ABORT`: Aborts the calibration process, discarding the current results.
|
||||
This command is only available during drift calibration.
|
||||
|
||||
### TEMPERATURE_PROBE_ENABLE
|
||||
`TEMPERATURE_PROBE_ENABLE ENABLE=[0|1]`: Sets temperature drift
|
||||
compensation on or off. If ENABLE is set to 0, drift compensation
|
||||
will be disabled, if set to 1 it is enabled.
|
||||
|
||||
### [tmcXXXX]
|
||||
|
||||
The following commands are available when any of the
|
||||
@@ -1481,39 +1676,3 @@ independent adjustments to each Z stepper to compensate for tilt. See
|
||||
the PROBE command for details on the optional probe parameters. The
|
||||
optional `RETRIES`, `RETRY_TOLERANCE`, and `HORIZONTAL_MOVE_Z` values
|
||||
override those options specified in the config file.
|
||||
|
||||
### [temperature_probe]
|
||||
|
||||
The following commands are available when a
|
||||
[temperature_probe config section](Config_Reference.md#temperature_probe)
|
||||
is enabled.
|
||||
|
||||
#### TEMPERATURE_PROBE_CALIBRATE
|
||||
`TEMPERATURE_PROBE_CALIBRATE [PROBE=<probe name>] [TARGET=<value>] [STEP=<value>]`:
|
||||
Initiates probe drift calibration for eddy current based probes. The `TARGET`
|
||||
is a target temperature for the last sample. When the temperature recorded
|
||||
during a sample exceeds the `TARGET` calibration will complete. The `STEP`
|
||||
parameter sets temperature delta (in C) between samples. After a sample has
|
||||
been taken, this delta is used to schedule a call to `TEMPERATURE_PROBE_NEXT`.
|
||||
The default `STEP` is 2.
|
||||
|
||||
#### TEMPERATURE_PROBE_NEXT
|
||||
`TEMPERATURE_PROBE_NEXT`: After calibration has started this command is run to
|
||||
take the next sample. It is automatically scheduled to run when the delta
|
||||
specified by `STEP` has been reached, however its also possible to manually run
|
||||
this command to force a new sample. This command is only available during
|
||||
calibration.
|
||||
|
||||
#### TEMPERATURE_PROBE_COMPLETE:
|
||||
`TEMPERATURE_PROBE_COMPLETE`: Can be used to end calibration and save the
|
||||
current result before the `TARGET` temperature is reached. This command
|
||||
is only available during calibration.
|
||||
|
||||
#### ABORT
|
||||
`ABORT`: Aborts the calibration process, discarding the current results.
|
||||
This command is only available during drift calibration.
|
||||
|
||||
### TEMPERATURE_PROBE_ENABLE
|
||||
`TEMPERATURE_PROBE_ENABLE ENABLE=[0|1]`: Sets temperature drift
|
||||
compensation on or off. If ENABLE is set to 0, drift compensation
|
||||
will be disabled, if set to 1 it is enabled.
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
# Installation
|
||||
|
||||
These instructions assume the software will run on a linux based host
|
||||
running a Klipper compatible front end. It is recommended that a
|
||||
SBC(Small Board Computer) such as a Raspberry Pi or Debian based Linux
|
||||
These instructions assume the software will run on a Linux-based host
|
||||
running a Klipper-compatible front end. It is recommended that a
|
||||
SBC(Small Board Computer) such as a Raspberry Pi or Debian-based Linux
|
||||
device be used as the host machine (see the
|
||||
[FAQ](FAQ.md#can-i-run-klipper-on-something-other-than-a-raspberry-pi-3)
|
||||
for other options).
|
||||
|
||||
For the purposes of these instructions host relates to the Linux device and
|
||||
mcu relates to the printboard. SBC relates to the term Small Board Computer
|
||||
For the purposes of these instructions, host relates to the Linux device and
|
||||
mcu relates to the printer board. SBC relates to the term Small Board Computer
|
||||
such as the Raspberry Pi.
|
||||
|
||||
## Obtain a Klipper Configuration File
|
||||
@@ -56,13 +56,13 @@ make an informed decision.
|
||||
## Obtaining an OS image for SBC's
|
||||
|
||||
There are many ways to obtain an OS image for Klipper for SBC use, most depend on
|
||||
what front end you wish to use. Some manafactures of these SBC boards also provide
|
||||
what front end you wish to use. Some manufacturers of these SBC boards also provide
|
||||
their own Klipper-centric images.
|
||||
|
||||
The two main Moonraker based front ends are [Fluidd](https://docs.fluidd.xyz/)
|
||||
The two main Moonraker-based front ends are [Fluidd](https://docs.fluidd.xyz/)
|
||||
and [Mainsail](https://docs.mainsail.xyz/), the latter of which has a premade install
|
||||
image ["MainsailOS"](http://docs.mainsailOS.xyz), this has the option for Raspberry Pi
|
||||
and some OrangePi varianta.
|
||||
image ["MainsailOS"](https://docs-os.mainsail.xyz/), this has the option for Raspberry Pi
|
||||
and some OrangePi variants.
|
||||
|
||||
Fluidd can be installed via KIAUH(Klipper Install And Update Helper), which
|
||||
is explained below and is a 3rd party installer for all things Klipper.
|
||||
@@ -73,12 +73,12 @@ process is explained in [OctoPrint.md](OctoPrint.md)
|
||||
## Installing via KIAUH
|
||||
|
||||
Normally you would start with a base image for your SBC, RPiOS Lite for example,
|
||||
or in the case of a x86 Linux device, Ubuntu Server. Please note that Desktop
|
||||
or in the case of an x86 Linux device, Ubuntu Server. Please note that Desktop
|
||||
variants are not recommended due to certain helper programs that can stop some
|
||||
Klipper functions working and even mask access to some print boards.
|
||||
Klipper functions from working and even mask access to some printer boards.
|
||||
|
||||
KIAUH can be used to install Klipper and its associated programs on a variety
|
||||
of Linux based systems that run a form of Debian. More information can be found
|
||||
of Linux-based systems that run a form of Debian. More information can be found
|
||||
at https://github.com/dw-0/kiauh
|
||||
|
||||
## Building and flashing the micro-controller
|
||||
@@ -106,7 +106,7 @@ make
|
||||
If the comments at the top of the
|
||||
[printer configuration file](#obtain-a-klipper-configuration-file)
|
||||
describe custom steps for "flashing" the final image to the printer
|
||||
control board then follow those steps and then proceed to
|
||||
control board, then follow those steps and then proceed to
|
||||
[configuring OctoPrint](#configuring-octoprint-to-use-klipper).
|
||||
|
||||
Otherwise, the following steps are often used to "flash" the printer
|
||||
@@ -132,12 +132,31 @@ run the command again, the missing item will be your print board(see the
|
||||
[FAQ](FAQ.md#wheres-my-serial-port) for more information).
|
||||
|
||||
For common micro-controllers with STM32 or clone chips, LPC chips and
|
||||
others it is usual that these need an initial Klipper flash via SD card.
|
||||
others, it is usual that these need an initial Klipper flash via SD card.
|
||||
|
||||
When flashing with this method, it is important to make sure that the
|
||||
print board is not connected with USB to the host, due to some boards
|
||||
being able to feed power back to the board and stopping a flash from
|
||||
occuring.
|
||||
occurring.
|
||||
|
||||
Please note, that most print boards that use SD cards for flash will
|
||||
implement some kind of flash loop protection for when the sd card is left
|
||||
in place. There are two common methods:
|
||||
|
||||
Filename Change Required (usually "stock" print boards):
|
||||
|
||||
These boards require the firmware file to have a different name each
|
||||
time you flash (for example, firmware1.bin, firmware2.bin, etc.).
|
||||
If you reuse the same filename, the board may ignore it and not update.
|
||||
|
||||
Automatic File Renaming (usually aftermarket print boards:
|
||||
|
||||
Other boards allow using the same filename, commonly firmware.bin,
|
||||
but after flashing, the board renames the file to firmware.cur.
|
||||
This helps indicate the firmware was successfully flashed and prevents
|
||||
it from flashing again on the next startup.
|
||||
|
||||
Before flashing, make sure to check which behavior your board follows.
|
||||
|
||||
For common micro-controllers using Atmega chips, for example the 2560,
|
||||
the code can be flashed with something
|
||||
@@ -172,7 +191,7 @@ The next step is to copy the
|
||||
the host.
|
||||
|
||||
Arguably the easiest way to set the Klipper configuration file is using the
|
||||
built in editors in Mainsail or Fluidd. These will allow the user to open
|
||||
built-in editors in Mainsail or Fluidd. These will allow the user to open
|
||||
the configuration examples and save them to be printer.cfg.
|
||||
|
||||
Another option is to use a desktop editor that supports editing files
|
||||
@@ -183,7 +202,7 @@ named "printer.cfg" in the home directory of the pi user
|
||||
(ie, /home/pi/printer.cfg).
|
||||
|
||||
Alternatively, one can also copy and edit the file directly on the
|
||||
host via ssh. That may look something like the following (be
|
||||
host via SSH. That may look something like the following (be
|
||||
sure to update the command to use the appropriate printer config
|
||||
filename):
|
||||
|
||||
@@ -214,9 +233,9 @@ the `[mcu]` section to look something similar to:
|
||||
serial: /dev/serial/by-id/usb-1a86_USB2.0-Serial-if00-port0
|
||||
```
|
||||
|
||||
After creating and editing the file it will be necessary to issue a
|
||||
After creating and editing the file, it will be necessary to issue a
|
||||
"restart" command in the command console to load the config. A
|
||||
"status" command will report the printer is ready if the Klipper
|
||||
"status" command will report that the printer is ready if the Klipper
|
||||
config file is successfully read and the micro-controller is
|
||||
successfully found and configured.
|
||||
|
||||
@@ -225,10 +244,10 @@ Klipper to report a configuration error. If an error occurs, make any
|
||||
necessary corrections to the printer config file and issue "restart"
|
||||
until "status" reports the printer is ready.
|
||||
|
||||
Klipper reports error messages via the command console and via pop up in
|
||||
Klipper reports error messages via the command console and pop-ups in
|
||||
Fluidd and Mainsail. The "status" command can be used to re-report error
|
||||
messages. A log is available and usually located in ~/printer_data/logs
|
||||
this is named klippy.log
|
||||
messages. A log is available and usually located at
|
||||
`~/printer_data/logs/klippy.log`.
|
||||
|
||||
After Klipper reports that the printer is ready, proceed to the
|
||||
[config check document](Config_checks.md) to perform some basic checks
|
||||
|
||||
489
docs/Load_Cell.md
Normal file
489
docs/Load_Cell.md
Normal file
@@ -0,0 +1,489 @@
|
||||
# Load Cells
|
||||
|
||||
This document describes Klipper's support for load cells. Basic load cell
|
||||
functionality can be used to read force data and to weigh things like filament.
|
||||
A calibrated force sensor is an important part of a load cell based probe.
|
||||
|
||||
## Related Documentation
|
||||
|
||||
* [load_cell Config Reference](Config_Reference.md#load_cell)
|
||||
* [load_cell G-Code Commands](G-Codes.md#load_cell)
|
||||
* [load_cell Status Reference](Status_Reference.md#load_cell)
|
||||
|
||||
## Using `LOAD_CELL_DIAGNOSTIC`
|
||||
|
||||
When you first connect a load cell its good practice to check for issues by
|
||||
running `LOAD_CELL_DIAGNOSTIC`. This tool collects 10 seconds of data from the
|
||||
load cell and resport statistics:
|
||||
|
||||
```
|
||||
$ LOAD_CELL_DIAGNOSTIC
|
||||
// Collecting load cell data for 10 seconds...
|
||||
// Samples Collected: 3211
|
||||
// Measured samples per second: 332.0
|
||||
// Good samples: 3211, Saturated samples: 0, Unique values: 900
|
||||
// Sample range: [4.01% to 4.02%]
|
||||
// Sample range / sensor capacity: 0.00524%
|
||||
```
|
||||
|
||||
Things you can check with this data:
|
||||
|
||||
* The configured sample rate of the sensor should be close to the 'Measured
|
||||
samples per second' value. If it is not you may have a configuration or wiring
|
||||
issue.
|
||||
* 'Saturated samples' should be 0. If you have saturated samples it means the
|
||||
load sell is seeing more force than it can measure.
|
||||
* 'Unique values' should be a large percentage of the 'Samples
|
||||
Collected' value. If 'Unique values' is 1 it is very likely a wiring issue.
|
||||
* Tap or push on the sensor while `LOAD_CELL_DIAGNOSTIC` runs. If
|
||||
things are working correctly this should increase the 'Sample range'.
|
||||
|
||||
## Calibrating a Load Cell
|
||||
|
||||
Load cells are calibrated using the `LOAD_CELL_CALIBRATE` command. This is an
|
||||
interactive calibration utility that walks you though a 3 step process:
|
||||
|
||||
1. First use the `TARE` command to establish the zero force value. This is the
|
||||
`reference_tare_counts` config value.
|
||||
2. Next you apply a known load or force to the load cell and run the
|
||||
`CALIBRATE GRAMS=nnn` command. From this the `counts_per_gram` value is
|
||||
calculated. See [the next section](#applying-a-known-force-or-load) for some
|
||||
suggestions on how to do this.
|
||||
3. Finally, use the `ACCEPT` command to save the results.
|
||||
|
||||
You can cancel the calibration process at any time with `ABORT`.
|
||||
|
||||
### Applying a Known Force or Load
|
||||
|
||||
The `CALIBRATE GRAMS=nnn` step can be accomplished in a number of ways. If your
|
||||
load cell is under a platform like a bed or filament holder it might be easiest
|
||||
to put a known mass on the platform. E.g. you could use a couple of 1KG filament
|
||||
spools.
|
||||
|
||||
If your load cell is in the printer's toolhead a different approach is easier.
|
||||
Put a digital scale on the printers bed and gently lower the toolhead onto the
|
||||
scale (or raise the bed into the toolhead if your bed moves). You may be able to
|
||||
do this using the `FORCE_MOVE` command. But more likely you will have to
|
||||
manually moving the z axis with the motors off until the toolhead presses on the
|
||||
scale.
|
||||
|
||||
A good calibration force would ideally be a large percentage of the load cell's
|
||||
rated capacity. E.g. if you have a 5Kg load cell you would ideally calibrate it
|
||||
with a 5kg mass. This might work well with under-bed sensors that have to
|
||||
support a lot of weight. For toolhead probes this may not be a load that your
|
||||
printer bed or toolhead can tolerate without damage. Do try to use at least 1Kg
|
||||
of force, most printers should tolerate this without issue.
|
||||
|
||||
When calibrating make careful note of the values reported:
|
||||
|
||||
```
|
||||
$ CALIBRATE GRAMS=555
|
||||
// Calibration value: -2.78% (-59803108), Counts/gram: 73039.78739,
|
||||
Total capacity: +/- 29.14Kg
|
||||
```
|
||||
|
||||
The `Total capacity` should be close to the theoretical rating of the load cell
|
||||
based on the sensor's capacity. If it is much larger you could have used a
|
||||
higher gain setting in the sensor or a more sensitive load cell. This isn't as
|
||||
critical for 32bit and 24bit sensors but is much more critical for low bit width
|
||||
sensors.
|
||||
|
||||
## Reading Force Data
|
||||
Force data can be read with a GCode command:
|
||||
|
||||
```
|
||||
LOAD_CELL_READ
|
||||
// 10.6g (1.94%)
|
||||
```
|
||||
|
||||
Data is also continuously read and can be consumed from the load_cell printer
|
||||
object in a macro:
|
||||
|
||||
```
|
||||
{% set grams = printer.load_cell.force_g %}
|
||||
```
|
||||
|
||||
This provides an average force over the last 1 second, similar to how
|
||||
temperature sensors work.
|
||||
|
||||
## Taring a Load Cell
|
||||
Taring, sometimes called zeroing, sets the current weight reported by the
|
||||
load_cell to 0. This is useful for measuring relative to a known weight. e.g.
|
||||
when measuring a filament spool, using `LOAD_CELL_TARE` sets the weight to 0.
|
||||
Then as filament is printed the load_cell will report the weight of the
|
||||
filament used.
|
||||
|
||||
```
|
||||
LOAD_CELL_TARE
|
||||
// Load cell tare value: 5.32% (445903)
|
||||
```
|
||||
|
||||
The current tare value is reported in the printers status and can be read in
|
||||
a macro:
|
||||
|
||||
```
|
||||
{% set tare_counts = printer.load_cell.tare_counts %}
|
||||
```
|
||||
|
||||
# Load Cell Probes
|
||||
|
||||
## Related Documentation
|
||||
|
||||
* [load_cell_probe Config Reference](Config_Reference.md#load_cell_probe)
|
||||
* [load_cell_probe G-Code Commands](G-Codes.md#load_cell_probe)
|
||||
* [load_cell_probe Statuc Reference](Status_Reference.md#load_cell_probe)
|
||||
|
||||
## Load Cell Probe Safety
|
||||
|
||||
Because load cells are a direct nozzle contact probe there is a risk of
|
||||
damage to your printer if too much force is used. The load cell probing system
|
||||
includes a number of safety checks that try to keep your machine safe from
|
||||
excessive force to the toolhead. It's important to understand what they are
|
||||
and how they work as you can defeat most of them with poorly chosen config
|
||||
values.
|
||||
|
||||
#### Calibration Check
|
||||
Every time a homing move starts, load_cell_probe checks
|
||||
that the load_cell is calibrated. If not it will stop the move with an error:
|
||||
`!! Load Cell not calibrated`.
|
||||
|
||||
#### `counts_per_gram`
|
||||
This setting is used to convert raw sensor counts into grams. All the safety
|
||||
limits are in gram units for your convenience. If the `counts_per_gram`
|
||||
setting is not accurate you can easily exceed the safe force on the toolhead.
|
||||
You should never guess this value. Use `LOAD_CELL_CALIBRATE` to find your load
|
||||
cells actual `counts_per_gram`.
|
||||
|
||||
#### `trigger_force`
|
||||
This is the force in grams that triggers the endstop to halt the homing move.
|
||||
When a homing move starts the endstop tares itself with the current reading
|
||||
from the load cell. `trigger_force` is measured from that tare value. There is
|
||||
always some overshoot of this value when the probe collides with the bed,
|
||||
so be conservative. e.g. a setting of 100g could result in 350g of peak force
|
||||
before the toolhead stops. This overshoot will increase with faster probing
|
||||
`speed`, a low ADC sample rate or [multi MCU homing](Multi_MCU_Homing.md).
|
||||
|
||||
#### `reference_tare_counts`
|
||||
This is the baseline tare value that is set by `LOAD_CELL_CALIBRATE`.
|
||||
This value works with `force_safety_limit` to limit the maximum force on the
|
||||
toolhead.
|
||||
|
||||
#### `force_safety_limit`
|
||||
This is the maximum absolute force, relative to `reference_tare_counts`,
|
||||
that the probe will allow while homing or probing. If the MCU sees this
|
||||
force exceeded it will shut down the printer with the error `!! Load cell
|
||||
endstop: too much force!`. There are a number of ways this can be triggered:
|
||||
|
||||
The first risk this protects against is picking too large of a value for
|
||||
`drift_filter_cutoff_frequency`. This can cause the drift filter to filter out
|
||||
a probe event and continue the homing move. If this happens the
|
||||
`force_safety_limit` acts as a backup protection.
|
||||
|
||||
The second problem is probing repeatedly in one place. Klipper does not retract
|
||||
the probe when doing a single `PROBE` command. This can result
|
||||
in force applied to the toolhead at the end of a probing cycle. Because
|
||||
external forces can vary greatly between probing locations,
|
||||
`load_cell_probe` performs a tare before beginning each probe. If you repeat
|
||||
the `PROBE` command, load_cell_probe will tare the endstop at the current force.
|
||||
Multiple cycles of this will result in ever-increasing force on the toolhead.
|
||||
`force_safety_limit` stops this cycle from running out of control.
|
||||
|
||||
Another way this run-away can happen is damage to a strain gauge. If the metal
|
||||
part is permanently bent it will change the `reference_tare_counts` of the
|
||||
device. This puts the starting tare value much closer to the limit making it
|
||||
more likely to be violated. You want to be notified if this is happening
|
||||
because your hardware has been permanently damaged.
|
||||
|
||||
The final way this can be triggered is due to temperature changes. If your
|
||||
strain gauges are heated their `reference_tare_counts` may be very different
|
||||
at ambient temperature vs operating temperature. In this case you may need
|
||||
to increase the `force_safety_limit` to allow for thermal changes.
|
||||
|
||||
#### Load Cell Endstop Watchdog Task
|
||||
When homing the load_cell_endstop starts a task on the MCU to trac
|
||||
measurements arriving from the sensor. If the sensor fails to send
|
||||
measurements for 2 sample periods the watchdog will shut down the printer
|
||||
with an error `!! LoadCell Endstop timed out waiting on ADC data`.
|
||||
|
||||
If this happens, the most likely cause is a fault from the ADC. Inadequate
|
||||
grounding of your printer can be the root cause. The frame, power supply
|
||||
case and pint bed should all be connected to ground. You may need to ground
|
||||
the frame in multiple places. Anodized aluminum extrusions do not conduct
|
||||
electricity well. You might need to sand the area where the grounding wire
|
||||
is attached to make good electrical contact.
|
||||
|
||||
## Load Cell Probe Setup
|
||||
|
||||
This section covers the process for commissioning a load cell probe.
|
||||
|
||||
### Verify the Load Cell First
|
||||
|
||||
A `[load_cell_probe]` is also a `[load_cell]` and G-code commands related to
|
||||
`[load_cell]` work with `[load_cell_probe]`. Before attempting to use a load
|
||||
cell probe, follow the directions for
|
||||
[calibrating the load cell](Load_Cell.md#calibrating-a-load-cell) with
|
||||
`CALIBRATE_LOAD_CELL` and checking its operation with `LOAD_CELL_DIAGNOSTIC`.
|
||||
|
||||
### Verify Probe Operation With LOAD_CELL_TEST_TAP
|
||||
|
||||
Use the command `LOAD_CELL_TEST_TAP` to test the operation of the load cell
|
||||
probe before actually trying to probe with it. This command detects taps,
|
||||
just like the PROBE command, but it does not move the z axis. By default, it
|
||||
listens for 3 taps before ending the test. You have 30 seconds to do each
|
||||
tap, if no taps are detected the command will time out.
|
||||
|
||||
If this test fails, check your configuration and `LOAD_CELL_DIAGNOSTIC`
|
||||
carefully to look for issues.
|
||||
|
||||
Load cell probes don't support the `QUERY_ENDSTOPS` or `QUERY_PROBE`
|
||||
commands. Use `LOAD_CELL_TEST_TAP` for testing functionality before probing.
|
||||
|
||||
### Homing Macros
|
||||
|
||||
Load cell probe is not an endstop and doesn't support `endstop:
|
||||
prove:z_virtual_endstop`. For the time being you'll need to configure your z
|
||||
axis with an MCU pin as its endstop. You won't actually be using the pin but
|
||||
for the time being you have to configure something.
|
||||
|
||||
To home the axis with just the probe you need to set up a custom homing
|
||||
macro. This requires setting up
|
||||
[homing_override](Config_Reference.md#homing_override).
|
||||
|
||||
Here is a simple macro that can accomplish this. Note that the
|
||||
`_HOME_Z_FROM_LAST_PROBE` macro has to be separate because of the way macros
|
||||
work. The sub-call is needed so that the `_HOME_Z_FROM_LAST_PROBE` macro can
|
||||
see the result of the probe in `printer.probe.last_z_result`.
|
||||
|
||||
```gcode
|
||||
[gcode_macro _HOME_Z_FROM_LAST_PROBE]
|
||||
gcode:
|
||||
{% set z_probed = printer.probe.last_z_result %}
|
||||
{% set z_position = printer.toolhead.position[2] %}
|
||||
{% set z_actual = z_position - z_probed %}
|
||||
SET_KINEMATIC_POSITION Z={z_actual}
|
||||
|
||||
[gcode_macro _HOME_Z]
|
||||
gcode:
|
||||
SET_GCODE_OFFSET Z=0 # load cell probes dont need a Z offset
|
||||
# position toolhead for homing Z, edit for your printers size
|
||||
#G90 # absolute move
|
||||
#G1 Y50 X50 F{5 * 60} # move to X/Y position for homing
|
||||
|
||||
# soft home the z axis to its limit so it can be moved:
|
||||
SET_KINEMATIC_POSITION Z={printer.toolhead.axis_maximum[2]}
|
||||
|
||||
# Fast approach and tap
|
||||
PROBE PROBE_SPEED={5 * 60} # override the speed for faster homing
|
||||
_HOME_Z_FROM_LAST_PROBE
|
||||
|
||||
# lift z to 2mm
|
||||
G91 # relative move
|
||||
G1 Z2 F{5 * 60}
|
||||
|
||||
# probe at standard speed
|
||||
PROBE
|
||||
_HOME_Z_FROM_LAST_PROBE
|
||||
|
||||
# lift z to 10mm for clearance
|
||||
G91 # relative move
|
||||
G1 Z10 F{5 * 60}
|
||||
```
|
||||
|
||||
### Suggested Probing Temperature
|
||||
|
||||
Currently, we suggest keeping the nozzle temperature below the level that causes
|
||||
the filament to ooze while homing and probing. 140C is a good starting
|
||||
point. This temperature is also low enough not to scar PEI build surfaces.
|
||||
|
||||
Fouling of the nozzle and the print bed due to oozing filament is the #1 source
|
||||
of probing error with the load cell probe. Klipper does not yet have a universal
|
||||
way to detect poor quality taps due to filament ooze. The existing code may
|
||||
decide that a tap is valid when it is of poor quality. Classifying these poor
|
||||
quality taps is an area of active research.
|
||||
|
||||
Klipper also lacks support for re-locating a probe point if the
|
||||
location has become fouled by filament ooze. Modules like `quad_gantry_level`
|
||||
will repeatedly probe the same coordinates even if a probe previously failed
|
||||
there.
|
||||
|
||||
Give the above it is strongly suggested not to probe at printing temperatures.
|
||||
|
||||
### Hot Nozzle Protection
|
||||
|
||||
The Voron project has a great macro for protecting your print surface from the
|
||||
hot nozzle. See [Voron Tap's
|
||||
`activate_gcode`](https://github.com/VoronDesign/Voron-Tap/blob/main/config/tap_klipper_instructions.md)
|
||||
|
||||
It is highly suggested to add something like this to your config.
|
||||
|
||||
### Nozzle Cleaning
|
||||
|
||||
Before probing the nozzle should be clean. You could do this manually before
|
||||
every print. You can also implement a nozzle scrubber and automate the process.
|
||||
Here is a suggested sequence:
|
||||
|
||||
1. Wait for the nozzle to heat up to probing temp (e.g. `M109 S140`)
|
||||
1. Home the machine (`G28`)
|
||||
1. Scrub the nozzle on a brush
|
||||
1. Heat soak the print bed
|
||||
1. Perform probing tasks: QGL, bed mesh etc.
|
||||
|
||||
### Temperature Compensation for Nozzle Growth
|
||||
|
||||
If you are probing at a safe temperature, the nozzle will expand after
|
||||
heating to printing temperatures. This will cause the nozzle to get longer
|
||||
and closer to the print surface. You can compensate for this with
|
||||
[[z_thermal_adjust]](Config_Reference.md#z_thermal_adjust). This adjustment will
|
||||
work across a range of printing
|
||||
temperatures from PLA to PC.
|
||||
|
||||
#### Calculating the `temp_coeff` for `[z_thermal_adjust]`
|
||||
|
||||
The easiest way to do this is to measure at 2 different temperatures.
|
||||
Ideally these should be the upper and lower limits of the printing
|
||||
temperature range. E.g. 180C and 290C. You can perform a `PROBE_ACCURACY` at
|
||||
both temperatures and then calculate the difference of the `average z` at both.
|
||||
|
||||
The adjustment value is the change in nozzle length divided by the change in
|
||||
temperature. e.g.
|
||||
|
||||
```
|
||||
temp_coeff = -0.05 / (290 - 180) = -0.00045455
|
||||
```
|
||||
|
||||
The expected result is a negative number. Positive values for `temp_coeff` move
|
||||
the nozzle closer to the bed and negative values move it further away.
|
||||
Expect to have to move the nozzle further away as it gets longer when hot.
|
||||
|
||||
#### Configure `[z_thermal_adjust]`
|
||||
Set up z_thermal_adjust to reference the `extruder` as the source of temperature
|
||||
data. E.g.:
|
||||
|
||||
```
|
||||
[z_thermal_adjust nozzle]
|
||||
temp_coeff=-0.00045455
|
||||
sensor_type: temperature_combined
|
||||
sensor_list: extruder
|
||||
combination_method: max
|
||||
min_temp: 0
|
||||
max_temp: 400
|
||||
max_z_adjustment: 0.1
|
||||
```
|
||||
|
||||
## Continuous Tare Filters for Toolhead Load Cells
|
||||
|
||||
Klipper implements a configurable IIR filter on the MCU to provide continuous
|
||||
tareing of the load cell while probing. Continuous taring means the 0 value
|
||||
moves with drift caused by external factors like bowden tubes and thermal
|
||||
changes. This is aimed at toolhead sensors and moving beds that experience lots
|
||||
of external forces that change while probing.
|
||||
|
||||
### Installing SciPy
|
||||
|
||||
The filtering code uses the excellent [SciPy](https://scipy.org/) library to
|
||||
compute the filter coefficients based on the values your enter into the config.
|
||||
|
||||
Pre-compiled SciPi builds are available for Python 3 on 32 bit Raspberry Pi
|
||||
systems. 32 bit + Python 3 is strongly recommended because it will streamline
|
||||
your installation experience. It does work with Python 2 but installation can
|
||||
take 30+ minutes and require installing additional tools.
|
||||
|
||||
```bash
|
||||
~/klippy-env/bin/pip install scipy
|
||||
```
|
||||
|
||||
### Filter Workbench
|
||||
|
||||
The filter parameters should be selected based on drift seen on the printer
|
||||
during normal operation. A Jupyter notebook is provided in scripts,
|
||||
[filter_workbench.ipynb](../scripts/filter_workbench.ipynb), to perform a
|
||||
detailed investigation with real captured data and FFTs.
|
||||
|
||||
### Filtering Suggestions
|
||||
|
||||
For those just trying to get a filter working follow these suggestions:
|
||||
|
||||
* The only essential option is `drift_filter_cutoff_frequency`. A conservative
|
||||
starting value is `0.5`Hz. Prusa shipped the MK4 with a setting of `0.8`Hz and
|
||||
the XL with `11.2`Hz. This is probably a safe range to experiment with. This
|
||||
value should be increased only until normal drift due to bowden tube force is
|
||||
eliminated. Setting this value too high will result in slow triggering and
|
||||
excess force going through the toolhead.
|
||||
* Keep `trigger_force` low. The default is `75`g. The drift filter keeps the
|
||||
internal grams value very close to 0 so a large trigger force is not needed.
|
||||
* Keep `force_safety_limit` to a conservative value. The default value is 2Kg
|
||||
and should keep your toolhead safe while experimenting. If you hit this limit
|
||||
the `drift_filter_cutoff_frequency` value may be too high.
|
||||
|
||||
## Suggestions for Load Cell Tool Boards
|
||||
|
||||
This section covers suggestions for those developing toolhead boards that want
|
||||
to support [load_cell_probe]
|
||||
|
||||
### ADC Sensor Selection & Board Development Hints
|
||||
|
||||
Ideally a sensor would meet these criteria:
|
||||
|
||||
* At least 24 bits wide
|
||||
* Use SPI communications
|
||||
* Has a pin can be used to indicate sample ready without SPI communications.
|
||||
This is often called the "data ready" or "DRDY" pin. Checking a pin is much
|
||||
faster than running an SPI query.
|
||||
* Has a programmable gain amplifier gain setting of 128. This should eliminate
|
||||
the need for a separate amplifier.
|
||||
* Indicates via SPI if the sensor has been reset. Detecting resets avoids
|
||||
timing errors in homing and using noisy data at startup. It can also help
|
||||
users
|
||||
track down wiring and grounding issues.
|
||||
* A selectable sample rate between 350Hz and 2Khz. Very high sample rates don't
|
||||
turn out to be beneficial in our 3D printers because they produce so much
|
||||
noise
|
||||
when moving fast. Sample rates below 250Hz will require slower probing speeds.
|
||||
They also increase the force on the toolhead due to longer delays between
|
||||
measurements. E.g. a 500Hz sensor moving at 5mm/s has the same safety factor
|
||||
as
|
||||
a 100Hz sensor moving at only 1mm/s.
|
||||
* If designing for under-bed applications, and you want to sense multiple load
|
||||
cells, use a chip that can sample all of its inputs simultaneously. Multiplex
|
||||
ADCs that require switching channels have a settling of several samples after
|
||||
each channel switch making them unsuitable for probing applications.
|
||||
|
||||
Implementing support for a new sensor chip is not particularly difficult with
|
||||
Klipper's `bulk_sensor` and `load_cell_endstop` infrastructure.
|
||||
|
||||
### 5V Power Filtering
|
||||
|
||||
It is strongly suggested to use larger capacitors than specified by the ADC chip
|
||||
manufacturer. ADC chips are usually targeted at low noise environments, like
|
||||
battery powered devices. Sensor manufacturers suggested application notes
|
||||
generally assume a quiet power supply. Treat their suggested capacitor values as
|
||||
minimums.
|
||||
|
||||
3D printers put huge amounts of noise onto the 5V bus and this can ruin the
|
||||
sensor's accuracy. Test the sensor on the board with a typical 3D printer power
|
||||
supply and active stepper drivers before deciding on smoothing capacitor sizes.
|
||||
|
||||
### Grounding & Ground Planes
|
||||
|
||||
Analog ADC chips contain components that are very vulnerable to noise and
|
||||
ESD. A large ground plane on the first board layer under the chip can help with
|
||||
noise. Keep the chip away from power sections and DC to DC converters. The board
|
||||
should have proper grounding back to the DC supply.
|
||||
|
||||
### HX711 and HX717 Notes
|
||||
|
||||
This sensor is popular because of its low cost and availability in the
|
||||
supply chain. However, this is a sensor with some drawbacks:
|
||||
|
||||
* The HX71x sensors use bit-bang communication which has a high overhead on the
|
||||
MCU. Using a sensor that communicates via SPI would save resources on the tool
|
||||
board's CPU.
|
||||
* The HX71x lacks a way to communicate reset events to the MCU. Klipper detects
|
||||
resets with a timing heuristic but this is not ideal. Resets indicate a
|
||||
problem with wiring or grounding.
|
||||
* For probing applications the HX717 version is strongly preferred because
|
||||
of its higher sample rate (320 vs 80). Probing speed on the HX711 should be
|
||||
limited to less than 2mm/s.
|
||||
* The sample rate on the HX71x cannot be set from klipper's config. If you have
|
||||
the 10SPS version of the sensor (which is widely distributed) it needs to
|
||||
be physically re-wired to run at 80SPS.
|
||||
@@ -18,9 +18,9 @@ board designs and different clones of them. If it is going to be connected to a
|
||||
For ADXL345s, make sure that the board supports SPI mode (a small number of
|
||||
boards appear to be hard-configured for I2C by pulling SDO to GND).
|
||||
|
||||
For MPU-9250/MPU-9255/MPU-6515/MPU-6050/MPU-6500s and LIS2DW/LIS3DH there are also
|
||||
a variety of board designs and clones with different I2C pull-up resistors which
|
||||
will need supplementing.
|
||||
For MPU-9250/MPU-9255/MPU-6515/MPU-6050/MPU-6500/ICM20948s and LIS2DW/LIS3DH there
|
||||
are also a variety of board designs and clones with different I2C pull-up resistors
|
||||
which will need supplementing.
|
||||
|
||||
## MCUs with Klipper I2C *fast-mode* Support
|
||||
|
||||
@@ -136,7 +136,7 @@ GND+SCL
|
||||
|
||||
Note that unlike a cable shield, any GND(s) should be connected at both ends.
|
||||
|
||||
#### MPU-9250/MPU-9255/MPU-6515/MPU-6050/MPU-6500
|
||||
#### MPU-9250/MPU-9255/MPU-6515/MPU-6050/MPU-6500/ICM20948
|
||||
|
||||
These accelerometers have been tested to work over I2C on the RPi, RP2040 (Pico)
|
||||
and AVR at 400kbit/s (*fast mode*). Some MPU accelerometer modules include
|
||||
@@ -152,7 +152,7 @@ Recommended connection scheme for I2C on the Raspberry Pi:
|
||||
| SDA | 03 | GPIO02 (SDA1) |
|
||||
| SCL | 05 | GPIO03 (SCL1) |
|
||||
|
||||
The RPi has buit-in 1.8K pull-ups on both SCL and SDA.
|
||||
The RPi has built-in 1.8K pull-ups on both SCL and SDA.
|
||||
|
||||

|
||||
|
||||
@@ -355,6 +355,7 @@ accel_chip: mpu9250
|
||||
probe_points:
|
||||
100, 100, 20 # an example
|
||||
```
|
||||
If you are using the ICM20948, replace instances of "mpu9250" with "icm20948".
|
||||
|
||||
#### Configure MPU-9520 Compatibles With Pico
|
||||
|
||||
@@ -377,6 +378,7 @@ probe_points:
|
||||
[static_digital_output pico_3V3pwm] # Improve power stability
|
||||
pins: pico:gpio23
|
||||
```
|
||||
If you are using the ICM20948, replace instances of "mpu9250" with "icm20948".
|
||||
|
||||
#### Configure MPU-9520 Compatibles with AVR
|
||||
|
||||
@@ -395,6 +397,7 @@ accel_chip: mpu9250
|
||||
probe_points:
|
||||
100, 100, 20 # an example
|
||||
```
|
||||
If you are using the ICM20948, replace instances of "mpu9250" with "icm20948".
|
||||
|
||||
Restart Klipper via the `RESTART` command.
|
||||
|
||||
|
||||
@@ -101,3 +101,4 @@ communication with the Klipper developers.
|
||||
- [TSL1401CL filament width sensor](TSL1401CL_Filament_Width_Sensor.md)
|
||||
- [Hall filament width sensor](Hall_Filament_Width_Sensor.md)
|
||||
- [Eddy Current Inductive probe](Eddy_Probe.md)
|
||||
- [Load Cells](Load_Cell.md)
|
||||
|
||||
@@ -22,7 +22,7 @@ Use a slicer to generate g-code for the large hollow square found in
|
||||
[docs/prints/square_tower.stl](prints/square_tower.stl). Use a high
|
||||
speed (eg, 100mm/s), zero infill, and a coarse layer height (the layer
|
||||
height should be around 75% of the nozzle diameter). Make sure any
|
||||
"dynamic acceleration control" is disabled in the slicer.
|
||||
"dynamic acceleration control" and "scarf joint" seams are disabled in the slicer.
|
||||
|
||||
Prepare for the test by issuing the following G-Code command:
|
||||
```
|
||||
|
||||
@@ -3,6 +3,35 @@
|
||||
History of Klipper releases. Please see
|
||||
[installation](Installation.md) for information on installing Klipper.
|
||||
|
||||
## Klipper 0.13.0
|
||||
|
||||
Available on 20250411. Major changes in this release:
|
||||
* New "sweeping vibrations" resonance testing mechanism for input
|
||||
shaper.
|
||||
* Fans and GPIO pins can now be assigned a formula (via Jinja2
|
||||
"templates").
|
||||
* The bed_mesh code now supports "adaptive bed mesh". The area probed
|
||||
can be adjusted for the size of the print.
|
||||
* A new `minimum_cruise_ratio` kinematic parameter has been added (it
|
||||
replaces the previous `max_accel_to_decel` parameter).
|
||||
* Several new sensors added:
|
||||
* Support for ldc1612 "eddy" current sensors. This includes probing
|
||||
support, fast "scan" probing, and temperature calibration.
|
||||
* New support for "load cell" measurements. Support for connecting
|
||||
these load cells to hx71x and ads1220 ADC sensors.
|
||||
* Support for BMP180, BMP388, and SHT3x temperature sensors. Support
|
||||
for measuring temperature with ADS1x1x ADC chips.
|
||||
* New lis3dh and icm20948 accelerometer support.
|
||||
* Support for mt6816 and mt6826s "hall angle" sensors.
|
||||
* New micro-controller improvements:
|
||||
* New support for rp2350 micro-controllers.
|
||||
* Existing rp2040 chips now run at 200MHz (up from 125Mhz).
|
||||
* The micro-controller code can now define many more commands (up to
|
||||
16384 from 128).
|
||||
* Other modules added: aip31068_spi, canbus_stats, error_mcu,
|
||||
garbage_collection, pwm_cycle_time, pwm_tool, garbage_collection.
|
||||
* Several bug fixes and code cleanups.
|
||||
|
||||
## Klipper 0.12.0
|
||||
|
||||
Available on 20231110. Major changes in this release:
|
||||
|
||||
@@ -31,7 +31,7 @@ AD do not include the flats on the corners that some test objects provide.
|
||||
## Configure your skew
|
||||
|
||||
Make sure `[skew_correction]` is in printer.cfg. You may now use the `SET_SKEW`
|
||||
gcode to configure skew_correcton. For example, if your measured lengths
|
||||
gcode to configure skew_correction. For example, if your measured lengths
|
||||
along XY are as follows:
|
||||
|
||||
```
|
||||
|
||||
@@ -121,5 +121,5 @@ M104 S0
|
||||
before the macro call. Also note that SuperSlicer has a
|
||||
"custom gcode only" button option, which achieves the same outcome.
|
||||
|
||||
An example of a START_PRINT macro using these paramaters can
|
||||
An example of a START_PRINT macro using these parameters can
|
||||
be found in config/sample-macros.cfg
|
||||
|
||||
@@ -31,7 +31,7 @@ The following information is available in the
|
||||
## bed_screws
|
||||
|
||||
The following information is available in the
|
||||
`Config_Reference.md#bed_screws` object:
|
||||
[bed_screws](Config_Reference.md#bed_screws) object:
|
||||
- `is_active`: Returns True if the bed screws adjustment tool is currently
|
||||
active.
|
||||
- `state`: The bed screws adjustment tool state. It is one of
|
||||
@@ -39,6 +39,27 @@ the following strings: "adjust", "fine".
|
||||
- `current_screw`: The index for the current screw being adjusted.
|
||||
- `accepted_screws`: The number of accepted screws.
|
||||
|
||||
## canbus_stats
|
||||
|
||||
The following information is available in the `canbus_stats
|
||||
some_mcu_name` object (this object is automatically available if an
|
||||
mcu is configured to use canbus):
|
||||
- `rx_error`: The number of receive errors detected by the
|
||||
micro-controller canbus hardware.
|
||||
- `tx_error`: The number of transmit errors detected by the
|
||||
micro-controller canbus hardware.
|
||||
- `tx_retries`: The number of transmit attempts that were retried due
|
||||
to bus contention or errors.
|
||||
- `bus_state`: The status of the interface (typically "active" for a
|
||||
bus in normal operation, "warn" for a bus with recent errors,
|
||||
"passive" for a bus that will no longer transmit canbus error
|
||||
frames, or "off" for a bus that will no longer transmit or receive
|
||||
messages).
|
||||
|
||||
Note that only the rp2XXX micro-controllers report a non-zero
|
||||
`tx_retries` field and the rp2XXX micro-controllers always report
|
||||
`tx_error` as zero and `bus_state` as "active".
|
||||
|
||||
## configfile
|
||||
|
||||
The following information is available in the `configfile` object
|
||||
@@ -221,6 +242,8 @@ The following information is available in the `gcode_move` object
|
||||
The following information is available in the
|
||||
[hall_filament_width_sensor](Config_Reference.md#hall_filament_width_sensor)
|
||||
object:
|
||||
- all items from
|
||||
[filament_switch_sensor](Status_Reference.md#filament_switch_sensor)
|
||||
- `is_active`: Returns True if the sensor is currently active.
|
||||
- `Diameter`: The last reading from the sensor in mm.
|
||||
- `Raw`: The last raw ADC reading from the sensor.
|
||||
@@ -268,6 +291,9 @@ is always available):
|
||||
- `printing_time`: The amount of time (in seconds) the printer has
|
||||
been in the "Printing" state (as tracked by the idle_timeout
|
||||
module).
|
||||
- `idle_timeout`: The current 'timeout' (in seconds)
|
||||
to wait for the gcode to be triggered.
|
||||
(as set by [SET_IDLE_TIMEOUT](G-Codes.md#set_idle_timeout))
|
||||
|
||||
## led
|
||||
|
||||
@@ -277,11 +303,31 @@ The following information is available for each `[led led_name]`,
|
||||
- `color_data`: A list of color lists containing the RGBW values for a
|
||||
led in the chain. Each value is represented as a float from 0.0 to
|
||||
1.0. Each color list contains 4 items (red, green, blue, white) even
|
||||
if the underyling LED supports fewer color channels. For example,
|
||||
if the underlying LED supports fewer color channels. For example,
|
||||
the blue value (3rd item in color list) of the second neopixel in a
|
||||
chain could be accessed at
|
||||
`printer["neopixel <config_name>"].color_data[1][2]`.
|
||||
|
||||
## load_cell
|
||||
|
||||
The following information is available for each `[load_cell name]`:
|
||||
- 'is_calibrated': True/False is the load cell calibrated
|
||||
- 'counts_per_gram': The number of raw sensor counts that equals 1 gram of force
|
||||
- 'reference_tare_counts': The reference number of raw sensor counts for 0 force
|
||||
- 'tare_counts': The current number of raw sensor counts for 0 force
|
||||
- 'force_g': The force in grams, averaged over the last polling period.
|
||||
- 'min_force_g': The minimum force in grams, over the last polling period.
|
||||
- 'max_force_g': The maximum force in grams, over the last polling period.
|
||||
|
||||
## load_cell_probe
|
||||
|
||||
The following information is available for `[load_cell_probe]`:
|
||||
- all items from [load_cell](Status_Reference.md#load_cell)
|
||||
- all items from [probe](Status_Reference.md#probe)
|
||||
- 'endstop_tare_counts': the load cell probe keeps a tare value independent of
|
||||
the load cell. This re-set at the start of each probe.
|
||||
- 'last_trigger_time': timestamp of the last homing trigger
|
||||
|
||||
## manual_probe
|
||||
|
||||
The following information is available in the
|
||||
@@ -426,6 +472,12 @@ The following information is available in
|
||||
- `printer["servo <config_name>"].value`: The last setting of the PWM
|
||||
pin (a value between 0.0 and 1.0) associated with the servo.
|
||||
|
||||
## skew_correction.py
|
||||
|
||||
The following information is available in the `skew_correction` object (this
|
||||
object is available if any skew_correction is defined):
|
||||
- `current_profile_name`: Returns the name of the currently loaded SKEW_PROFILE.
|
||||
|
||||
## stepper_enable
|
||||
|
||||
The following information is available in the `stepper_enable` object (this
|
||||
@@ -530,6 +582,12 @@ on a cartesian, hybrid_corexy or hybrid_corexz robot
|
||||
- `carriage_1`: The mode of the carriage 1. Possible values are:
|
||||
"INACTIVE", "PRIMARY", "COPY", and "MIRROR".
|
||||
|
||||
On a `generic_cartesian` kinematic, the following information is
|
||||
available in `dual_carriage`:
|
||||
- `carriages["<carriage>"]`: The mode of the carriage `<carriage>`. Possible
|
||||
values are "INACTIVE" and "PRIMARY" for the primary carriage and "INACTIVE",
|
||||
"PRIMARY", "COPY", and "MIRROR" for the dual carriage.
|
||||
|
||||
## virtual_sdcard
|
||||
|
||||
The following information is available in the
|
||||
|
||||
@@ -83,6 +83,10 @@ setting `stealthchop_threshold` to 999999). Unfortunately, the drivers
|
||||
often produce poor and confusing results if the mode changes while the
|
||||
motor is at a non-zero velocity.
|
||||
|
||||
Note that the `stealthchop_threshold` config option does not impact
|
||||
sensorless homing as Klipper automatically switches the TMC driver to
|
||||
an appropriate mode during sensorless homing operations.
|
||||
|
||||
## TMC interpolate setting introduces small position deviation
|
||||
|
||||
The TMC driver `interpolate` setting may reduce the audible noise of
|
||||
|
||||
@@ -8,13 +8,13 @@ directory, the docs/CNAME file also controls the website generation.
|
||||
To test deploy the main English site locally one can use commands
|
||||
similar to the following:
|
||||
|
||||
virtualenv ~/mkdocs-env && ~/python-env/bin/pip install -r ~/klipper/docs/_klipper3d/mkdocs-requirements.txt
|
||||
virtualenv ~/mkdocs-env && ~/mkdocs-env/bin/pip install -r ~/klipper/docs/_klipper3d/mkdocs-requirements.txt
|
||||
cd ~/klipper && ~/mkdocs-env/bin/mkdocs serve --config-file ~/klipper/docs/_klipper3d/mkdocs.yml -a 0.0.0.0:8000
|
||||
|
||||
To test deploy the multi-language site locally one can use commands
|
||||
similar to the following:
|
||||
|
||||
virtualenv ~/mkdocs-env && ~/python-env/bin/pip install -r ~/klipper/docs/_klipper3d/mkdocs-requirements.txt
|
||||
virtualenv ~/mkdocs-env && ~/mkdocs-env/bin/pip install -r ~/klipper/docs/_klipper3d/mkdocs-requirements.txt
|
||||
source ~/mkdocs-env/bin/activate
|
||||
cd ~/klipper && ./docs/_klipper3d/build-translations.sh
|
||||
cd ~/klipper/site/ && python3 -m http.server 8000
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Python virtualenv module requirements for mkdocs
|
||||
jinja2==3.1.4
|
||||
jinja2==3.1.6
|
||||
mkdocs==1.2.4
|
||||
mkdocs-material==8.1.3
|
||||
mkdocs-simple-hooks==0.1.3
|
||||
|
||||
@@ -141,4 +141,5 @@ nav:
|
||||
- TSL1401CL_Filament_Width_Sensor.md
|
||||
- Hall_Filament_Width_Sensor.md
|
||||
- Eddy_Probe.md
|
||||
- Load_Cell.md
|
||||
- Sponsors.md
|
||||
|
||||
@@ -8,14 +8,12 @@ title: Welcome
|
||||
|
||||
The Klipper firmware controls 3d-Printers. It combines the power of a
|
||||
general purpose computer with one or more micro-controllers. See the
|
||||
[features document](https://www.klipper3d.org/Features.html) for more
|
||||
information on why you should use the Klipper software.
|
||||
[features document](Features.md) for more information on why you
|
||||
should use the Klipper software.
|
||||
|
||||
Start by [installing Klipper software](https://www.klipper3d.org/Installation.html).
|
||||
Start by [installing Klipper software](Installation.md).
|
||||
|
||||
Klipper software is Free Software. Read the
|
||||
[documentation](https://www.klipper3d.org/Overview.html), see the
|
||||
[license](COPYING), or
|
||||
[documentation](Overview.md), see the [license](../COPYING), or
|
||||
[download](https://github.com/Klipper3d/Klipper) the software. We
|
||||
depend on the generous support from our
|
||||
[sponsors](https://www.klipper3d.org/Sponsors.html).
|
||||
depend on the generous support from our [sponsors](Sponsors.md).
|
||||
|
||||
@@ -17,16 +17,16 @@ COMPILE_ARGS = ("-Wall -g -O2 -shared -fPIC"
|
||||
" -o %s %s")
|
||||
SSE_FLAGS = "-mfpmath=sse -msse2"
|
||||
SOURCE_FILES = [
|
||||
'pyhelper.c', 'serialqueue.c', 'stepcompress.c', 'itersolve.c', 'trapq.c',
|
||||
'pollreactor.c', 'msgblock.c', 'trdispatch.c',
|
||||
'pyhelper.c', 'serialqueue.c', 'stepcompress.c', 'steppersync.c',
|
||||
'itersolve.c', 'trapq.c', 'pollreactor.c', 'msgblock.c', 'trdispatch.c',
|
||||
'kin_cartesian.c', 'kin_corexy.c', 'kin_corexz.c', 'kin_delta.c',
|
||||
'kin_deltesian.c', 'kin_polar.c', 'kin_rotary_delta.c', 'kin_winch.c',
|
||||
'kin_extruder.c', 'kin_shaper.c', 'kin_idex.c',
|
||||
'kin_extruder.c', 'kin_shaper.c', 'kin_idex.c', 'kin_generic.c'
|
||||
]
|
||||
DEST_LIB = "c_helper.so"
|
||||
OTHER_FILES = [
|
||||
'list.h', 'serialqueue.h', 'stepcompress.h', 'itersolve.h', 'pyhelper.h',
|
||||
'trapq.h', 'pollreactor.h', 'msgblock.h'
|
||||
'list.h', 'serialqueue.h', 'stepcompress.h', 'steppersync.h',
|
||||
'itersolve.h', 'pyhelper.h', 'trapq.h', 'pollreactor.h', 'msgblock.h'
|
||||
]
|
||||
|
||||
defs_stepcompress = """
|
||||
@@ -54,25 +54,28 @@ defs_stepcompress = """
|
||||
int stepcompress_extract_old(struct stepcompress *sc
|
||||
, struct pull_history_steps *p, int max
|
||||
, uint64_t start_clock, uint64_t end_clock);
|
||||
void stepcompress_set_stepper_kinematics(struct stepcompress *sc
|
||||
, struct stepper_kinematics *sk);
|
||||
"""
|
||||
|
||||
defs_steppersync = """
|
||||
struct steppersync *steppersync_alloc(struct serialqueue *sq
|
||||
, struct stepcompress **sc_list, int sc_num, int move_num);
|
||||
void steppersync_free(struct steppersync *ss);
|
||||
void steppersync_set_time(struct steppersync *ss
|
||||
, double time_offset, double mcu_freq);
|
||||
int steppersync_flush(struct steppersync *ss, uint64_t move_clock
|
||||
, uint64_t clear_history_clock);
|
||||
int32_t steppersync_generate_steps(struct steppersync *ss
|
||||
, double gen_steps_time, uint64_t flush_clock);
|
||||
void steppersync_history_expire(struct steppersync *ss, uint64_t end_clock);
|
||||
int steppersync_flush(struct steppersync *ss, uint64_t move_clock);
|
||||
"""
|
||||
|
||||
defs_itersolve = """
|
||||
int32_t itersolve_generate_steps(struct stepper_kinematics *sk
|
||||
, double flush_time);
|
||||
double itersolve_check_active(struct stepper_kinematics *sk
|
||||
, double flush_time);
|
||||
int32_t itersolve_is_active_axis(struct stepper_kinematics *sk, char axis);
|
||||
void itersolve_set_trapq(struct stepper_kinematics *sk, struct trapq *tq);
|
||||
void itersolve_set_stepcompress(struct stepper_kinematics *sk
|
||||
, struct stepcompress *sc, double step_dist);
|
||||
void itersolve_set_trapq(struct stepper_kinematics *sk, struct trapq *tq
|
||||
, double step_dist);
|
||||
double itersolve_calc_position_from_coord(struct stepper_kinematics *sk
|
||||
, double x, double y, double z);
|
||||
void itersolve_set_position(struct stepper_kinematics *sk
|
||||
@@ -106,6 +109,12 @@ defs_trapq = """
|
||||
defs_kin_cartesian = """
|
||||
struct stepper_kinematics *cartesian_stepper_alloc(char axis);
|
||||
"""
|
||||
defs_kin_generic_cartesian = """
|
||||
struct stepper_kinematics *generic_cartesian_stepper_alloc(double a_x
|
||||
, double a_y, double a_z);
|
||||
void generic_cartesian_stepper_set_coeffs(struct stepper_kinematics *sk
|
||||
, double a_x, double a_y, double a_z);
|
||||
"""
|
||||
|
||||
defs_kin_corexy = """
|
||||
struct stepper_kinematics *corexy_stepper_alloc(char type);
|
||||
@@ -154,6 +163,7 @@ defs_kin_shaper = """
|
||||
, int n, double a[], double t[]);
|
||||
int input_shaper_set_sk(struct stepper_kinematics *sk
|
||||
, struct stepper_kinematics *orig_sk);
|
||||
void input_shaper_update_sk(struct stepper_kinematics *sk);
|
||||
struct stepper_kinematics * input_shaper_alloc(void);
|
||||
"""
|
||||
|
||||
@@ -175,7 +185,7 @@ defs_serialqueue = """
|
||||
};
|
||||
|
||||
struct serialqueue *serialqueue_alloc(int serial_fd, char serial_fd_type
|
||||
, int client_id);
|
||||
, int client_id, char name[16]);
|
||||
void serialqueue_exit(struct serialqueue *sq);
|
||||
void serialqueue_free(struct serialqueue *sq);
|
||||
struct command_queue *serialqueue_alloc_commandqueue(void);
|
||||
@@ -212,6 +222,7 @@ defs_trdispatch = """
|
||||
defs_pyhelper = """
|
||||
void set_python_logging_callback(void (*func)(const char *));
|
||||
double get_monotonic(void);
|
||||
int set_thread_name(char name[16]);
|
||||
"""
|
||||
|
||||
defs_std = """
|
||||
@@ -220,10 +231,11 @@ defs_std = """
|
||||
|
||||
defs_all = [
|
||||
defs_pyhelper, defs_serialqueue, defs_std, defs_stepcompress,
|
||||
defs_itersolve, defs_trapq, defs_trdispatch,
|
||||
defs_steppersync, defs_itersolve, defs_trapq, defs_trdispatch,
|
||||
defs_kin_cartesian, defs_kin_corexy, defs_kin_corexz, defs_kin_delta,
|
||||
defs_kin_deltesian, defs_kin_polar, defs_kin_rotary_delta, defs_kin_winch,
|
||||
defs_kin_extruder, defs_kin_shaper, defs_kin_idex,
|
||||
defs_kin_generic_cartesian,
|
||||
]
|
||||
|
||||
# Update filenames to an absolute path
|
||||
@@ -262,11 +274,33 @@ def do_build_code(cmd):
|
||||
logging.error(msg)
|
||||
raise Exception(msg)
|
||||
|
||||
# Build the main c_helper.so c code library
|
||||
def check_build_c_library():
|
||||
srcdir = os.path.dirname(os.path.realpath(__file__))
|
||||
srcfiles = get_abs_files(srcdir, SOURCE_FILES)
|
||||
ofiles = get_abs_files(srcdir, OTHER_FILES)
|
||||
destlib = get_abs_files(srcdir, [DEST_LIB])[0]
|
||||
if not check_build_code(srcfiles+ofiles+[__file__], destlib):
|
||||
# Code already built
|
||||
return destlib
|
||||
# Select command line options
|
||||
if check_gcc_option(SSE_FLAGS):
|
||||
cmd = "%s %s %s" % (GCC_CMD, SSE_FLAGS, COMPILE_ARGS)
|
||||
else:
|
||||
cmd = "%s %s" % (GCC_CMD, COMPILE_ARGS)
|
||||
# Invoke compiler
|
||||
logging.info("Building C code module %s", DEST_LIB)
|
||||
tempdestlib = get_abs_files(srcdir, ["_temp_" + DEST_LIB])[0]
|
||||
do_build_code(cmd % (tempdestlib, ' '.join(srcfiles)))
|
||||
# Rename from temporary file to final file name
|
||||
os.rename(tempdestlib, destlib)
|
||||
return destlib
|
||||
|
||||
FFI_main = None
|
||||
FFI_lib = None
|
||||
pyhelper_logging_callback = None
|
||||
|
||||
# Hepler invoked from C errorf() code to log errors
|
||||
# Helper invoked from C errorf() code to log errors
|
||||
def logging_callback(msg):
|
||||
logging.error(FFI_main.string(msg))
|
||||
|
||||
@@ -274,17 +308,9 @@ def logging_callback(msg):
|
||||
def get_ffi():
|
||||
global FFI_main, FFI_lib, pyhelper_logging_callback
|
||||
if FFI_lib is None:
|
||||
srcdir = os.path.dirname(os.path.realpath(__file__))
|
||||
srcfiles = get_abs_files(srcdir, SOURCE_FILES)
|
||||
ofiles = get_abs_files(srcdir, OTHER_FILES)
|
||||
destlib = get_abs_files(srcdir, [DEST_LIB])[0]
|
||||
if check_build_code(srcfiles+ofiles+[__file__], destlib):
|
||||
if check_gcc_option(SSE_FLAGS):
|
||||
cmd = "%s %s %s" % (GCC_CMD, SSE_FLAGS, COMPILE_ARGS)
|
||||
else:
|
||||
cmd = "%s %s" % (GCC_CMD, COMPILE_ARGS)
|
||||
logging.info("Building C code module %s", DEST_LIB)
|
||||
do_build_code(cmd % (destlib, ' '.join(srcfiles)))
|
||||
# Check if library needs to be built, and build if so
|
||||
destlib = check_build_c_library()
|
||||
# Open library
|
||||
FFI_main = cffi.FFI()
|
||||
for d in defs_all:
|
||||
FFI_main.cdef(d)
|
||||
|
||||
@@ -26,8 +26,8 @@ struct timepos {
|
||||
|
||||
// Generate step times for a portion of a move
|
||||
static int32_t
|
||||
itersolve_gen_steps_range(struct stepper_kinematics *sk, struct move *m
|
||||
, double abs_start, double abs_end)
|
||||
itersolve_gen_steps_range(struct stepper_kinematics *sk, struct stepcompress *sc
|
||||
, struct move *m, double abs_start, double abs_end)
|
||||
{
|
||||
sk_calc_callback calc_position_cb = sk->calc_position_cb;
|
||||
double half_step = .5 * sk->step_dist;
|
||||
@@ -37,7 +37,7 @@ itersolve_gen_steps_range(struct stepper_kinematics *sk, struct move *m
|
||||
if (end > m->move_t)
|
||||
end = m->move_t;
|
||||
struct timepos old_guess = {start, sk->commanded_pos}, guess = old_guess;
|
||||
int sdir = stepcompress_get_step_dir(sk->sc);
|
||||
int sdir = stepcompress_get_step_dir(sc);
|
||||
int is_dir_change = 0, have_bracket = 0, check_oscillate = 0;
|
||||
double target = sk->commanded_pos + (sdir ? half_step : -half_step);
|
||||
double last_time=start, low_time=start, high_time=start + SEEK_TIME_RESET;
|
||||
@@ -99,13 +99,13 @@ itersolve_gen_steps_range(struct stepper_kinematics *sk, struct move *m
|
||||
if (!have_bracket || high_time - low_time > .000000001) {
|
||||
if (!is_dir_change && rel_dist >= -half_step)
|
||||
// Avoid rollback if stepper fully reaches step position
|
||||
stepcompress_commit(sk->sc);
|
||||
stepcompress_commit(sc);
|
||||
// Guess is not close enough - guess again with new time
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// Found next step - submit it
|
||||
int ret = stepcompress_append(sk->sc, sdir, m->print_time, guess.time);
|
||||
int ret = stepcompress_append(sc, sdir, m->print_time, guess.time);
|
||||
if (ret)
|
||||
return ret;
|
||||
target = sdir ? target+half_step+half_step : target-half_step-half_step;
|
||||
@@ -143,8 +143,9 @@ check_active(struct stepper_kinematics *sk, struct move *m)
|
||||
}
|
||||
|
||||
// Generate step times for a range of moves on the trapq
|
||||
int32_t __visible
|
||||
itersolve_generate_steps(struct stepper_kinematics *sk, double flush_time)
|
||||
int32_t
|
||||
itersolve_generate_steps(struct stepper_kinematics *sk, struct stepcompress *sc
|
||||
, double flush_time)
|
||||
{
|
||||
double last_flush_time = sk->last_flush_time;
|
||||
sk->last_flush_time = flush_time;
|
||||
@@ -170,15 +171,15 @@ itersolve_generate_steps(struct stepper_kinematics *sk, double flush_time)
|
||||
while (--skip_count && pm->print_time > abs_start)
|
||||
pm = list_prev_entry(pm, node);
|
||||
do {
|
||||
int32_t ret = itersolve_gen_steps_range(sk, pm, abs_start
|
||||
, flush_time);
|
||||
int32_t ret = itersolve_gen_steps_range(
|
||||
sk, sc, pm, abs_start, flush_time);
|
||||
if (ret)
|
||||
return ret;
|
||||
pm = list_next_entry(pm, node);
|
||||
} while (pm != m);
|
||||
}
|
||||
// Generate steps for this move
|
||||
int32_t ret = itersolve_gen_steps_range(sk, m, last_flush_time
|
||||
int32_t ret = itersolve_gen_steps_range(sk, sc, m, last_flush_time
|
||||
, flush_time);
|
||||
if (ret)
|
||||
return ret;
|
||||
@@ -195,8 +196,8 @@ itersolve_generate_steps(struct stepper_kinematics *sk, double flush_time)
|
||||
double abs_end = force_steps_time;
|
||||
if (abs_end > flush_time)
|
||||
abs_end = flush_time;
|
||||
int32_t ret = itersolve_gen_steps_range(sk, m, last_flush_time
|
||||
, abs_end);
|
||||
int32_t ret = itersolve_gen_steps_range(
|
||||
sk, sc, m, last_flush_time, abs_end);
|
||||
if (ret)
|
||||
return ret;
|
||||
skip_count = 1;
|
||||
@@ -240,16 +241,10 @@ itersolve_is_active_axis(struct stepper_kinematics *sk, char axis)
|
||||
}
|
||||
|
||||
void __visible
|
||||
itersolve_set_trapq(struct stepper_kinematics *sk, struct trapq *tq)
|
||||
itersolve_set_trapq(struct stepper_kinematics *sk, struct trapq *tq
|
||||
, double step_dist)
|
||||
{
|
||||
sk->tq = tq;
|
||||
}
|
||||
|
||||
void __visible
|
||||
itersolve_set_stepcompress(struct stepper_kinematics *sk
|
||||
, struct stepcompress *sc, double step_dist)
|
||||
{
|
||||
sk->sc = sc;
|
||||
sk->step_dist = step_dist;
|
||||
}
|
||||
|
||||
|
||||
@@ -26,12 +26,11 @@ struct stepper_kinematics {
|
||||
};
|
||||
|
||||
int32_t itersolve_generate_steps(struct stepper_kinematics *sk
|
||||
, double flush_time);
|
||||
, struct stepcompress *sc, double flush_time);
|
||||
double itersolve_check_active(struct stepper_kinematics *sk, double flush_time);
|
||||
int32_t itersolve_is_active_axis(struct stepper_kinematics *sk, char axis);
|
||||
void itersolve_set_trapq(struct stepper_kinematics *sk, struct trapq *tq);
|
||||
void itersolve_set_stepcompress(struct stepper_kinematics *sk
|
||||
, struct stepcompress *sc, double step_dist);
|
||||
void itersolve_set_trapq(struct stepper_kinematics *sk, struct trapq *tq
|
||||
, double step_dist);
|
||||
double itersolve_calc_position_from_coord(struct stepper_kinematics *sk
|
||||
, double x, double y, double z);
|
||||
void itersolve_set_position(struct stepper_kinematics *sk
|
||||
|
||||
52
klippy/chelper/kin_generic.c
Normal file
52
klippy/chelper/kin_generic.c
Normal file
@@ -0,0 +1,52 @@
|
||||
// Generic cartesian kinematics stepper position calculation
|
||||
//
|
||||
// Copyright (C) 2024 Dmitry Butyugin <dmbutyugin@google.com>
|
||||
//
|
||||
// This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
|
||||
#include <stddef.h> // offsetof
|
||||
#include <stdlib.h> // malloc
|
||||
#include <string.h> // memset
|
||||
#include "compiler.h" // __visible
|
||||
#include "itersolve.h" // struct stepper_kinematics
|
||||
#include "trapq.h" // move_get_coord
|
||||
|
||||
struct generic_cartesian_stepper {
|
||||
struct stepper_kinematics sk;
|
||||
struct coord a;
|
||||
};
|
||||
|
||||
static double
|
||||
generic_cartesian_stepper_calc_position(struct stepper_kinematics *sk
|
||||
, struct move *m, double move_time)
|
||||
{
|
||||
struct generic_cartesian_stepper *cs = container_of(
|
||||
sk, struct generic_cartesian_stepper, sk);
|
||||
struct coord c = move_get_coord(m, move_time);
|
||||
return cs->a.x * c.x + cs->a.y * c.y + cs->a.z * c.z;
|
||||
}
|
||||
|
||||
void __visible
|
||||
generic_cartesian_stepper_set_coeffs(struct stepper_kinematics *sk
|
||||
, double a_x, double a_y, double a_z)
|
||||
{
|
||||
struct generic_cartesian_stepper *cs = container_of(
|
||||
sk, struct generic_cartesian_stepper, sk);
|
||||
cs->a.x = a_x;
|
||||
cs->a.y = a_y;
|
||||
cs->a.z = a_z;
|
||||
cs->sk.active_flags = 0;
|
||||
if (a_x) cs->sk.active_flags |= AF_X;
|
||||
if (a_y) cs->sk.active_flags |= AF_Y;
|
||||
if (a_z) cs->sk.active_flags |= AF_Z;
|
||||
}
|
||||
|
||||
struct stepper_kinematics * __visible
|
||||
generic_cartesian_stepper_alloc(double a_x, double a_y, double a_z)
|
||||
{
|
||||
struct generic_cartesian_stepper *cs = malloc(sizeof(*cs));
|
||||
memset(cs, 0, sizeof(*cs));
|
||||
cs->sk.calc_position_cb = generic_cartesian_stepper_calc_position;
|
||||
generic_cartesian_stepper_set_coeffs(&cs->sk, a_x, a_y, a_z);
|
||||
return &cs->sk;
|
||||
}
|
||||
@@ -77,5 +77,6 @@ dual_carriage_alloc(void)
|
||||
struct dual_carriage_stepper *dc = malloc(sizeof(*dc));
|
||||
memset(dc, 0, sizeof(*dc));
|
||||
dc->m.move_t = 2. * DUMMY_T;
|
||||
dc->x_scale = dc->y_scale = 1.0;
|
||||
return &dc->sk;
|
||||
}
|
||||
|
||||
@@ -156,25 +156,14 @@ shaper_xy_calc_position(struct stepper_kinematics *sk, struct move *m
|
||||
return is->orig_sk->calc_position_cb(is->orig_sk, &is->m, DUMMY_T);
|
||||
}
|
||||
|
||||
int __visible
|
||||
input_shaper_set_sk(struct stepper_kinematics *sk
|
||||
, struct stepper_kinematics *orig_sk)
|
||||
// A callback that forwards post_cb call to the original kinematics
|
||||
static void
|
||||
shaper_commanded_pos_post_fixup(struct stepper_kinematics *sk)
|
||||
{
|
||||
struct input_shaper *is = container_of(sk, struct input_shaper, sk);
|
||||
if (orig_sk->active_flags == AF_X)
|
||||
is->sk.calc_position_cb = shaper_x_calc_position;
|
||||
else if (orig_sk->active_flags == AF_Y)
|
||||
is->sk.calc_position_cb = shaper_y_calc_position;
|
||||
else if (orig_sk->active_flags & (AF_X | AF_Y))
|
||||
is->sk.calc_position_cb = shaper_xy_calc_position;
|
||||
else
|
||||
return -1;
|
||||
is->sk.active_flags = orig_sk->active_flags;
|
||||
is->orig_sk = orig_sk;
|
||||
is->sk.commanded_pos = orig_sk->commanded_pos;
|
||||
is->sk.last_flush_time = orig_sk->last_flush_time;
|
||||
is->sk.last_move_time = orig_sk->last_move_time;
|
||||
return 0;
|
||||
is->orig_sk->commanded_pos = sk->commanded_pos;
|
||||
is->orig_sk->post_cb(is->orig_sk);
|
||||
sk->commanded_pos = is->orig_sk->commanded_pos;
|
||||
}
|
||||
|
||||
static void
|
||||
@@ -195,6 +184,44 @@ shaper_note_generation_time(struct input_shaper *is)
|
||||
is->sk.gen_steps_post_active = post_active;
|
||||
}
|
||||
|
||||
void __visible
|
||||
input_shaper_update_sk(struct stepper_kinematics *sk)
|
||||
{
|
||||
struct input_shaper *is = container_of(sk, struct input_shaper, sk);
|
||||
if ((is->orig_sk->active_flags & (AF_X | AF_Y)) == (AF_X | AF_Y))
|
||||
is->sk.calc_position_cb = shaper_xy_calc_position;
|
||||
else if (is->orig_sk->active_flags & AF_X)
|
||||
is->sk.calc_position_cb = shaper_x_calc_position;
|
||||
else if (is->orig_sk->active_flags & AF_Y)
|
||||
is->sk.calc_position_cb = shaper_y_calc_position;
|
||||
is->sk.active_flags = is->orig_sk->active_flags;
|
||||
shaper_note_generation_time(is);
|
||||
}
|
||||
|
||||
int __visible
|
||||
input_shaper_set_sk(struct stepper_kinematics *sk
|
||||
, struct stepper_kinematics *orig_sk)
|
||||
{
|
||||
struct input_shaper *is = container_of(sk, struct input_shaper, sk);
|
||||
if (orig_sk->active_flags == AF_X)
|
||||
is->sk.calc_position_cb = shaper_x_calc_position;
|
||||
else if (orig_sk->active_flags == AF_Y)
|
||||
is->sk.calc_position_cb = shaper_y_calc_position;
|
||||
else if (orig_sk->active_flags & (AF_X | AF_Y))
|
||||
is->sk.calc_position_cb = shaper_xy_calc_position;
|
||||
else
|
||||
return -1;
|
||||
is->sk.active_flags = orig_sk->active_flags;
|
||||
is->orig_sk = orig_sk;
|
||||
is->sk.commanded_pos = orig_sk->commanded_pos;
|
||||
is->sk.last_flush_time = orig_sk->last_flush_time;
|
||||
is->sk.last_move_time = orig_sk->last_move_time;
|
||||
if (orig_sk->post_cb) {
|
||||
is->sk.post_cb = shaper_commanded_pos_post_fixup;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int __visible
|
||||
input_shaper_set_shaper_params(struct stepper_kinematics *sk, char axis
|
||||
, int n, double a[], double t[])
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#include <stdio.h> // fprintf
|
||||
#include <string.h> // strerror
|
||||
#include <time.h> // struct timespec
|
||||
#include <linux/prctl.h> // PR_SET_NAME
|
||||
#include <sys/prctl.h> // prctl
|
||||
#include "compiler.h" // __visible
|
||||
#include "pyhelper.h" // get_monotonic
|
||||
|
||||
@@ -92,3 +94,10 @@ dump_string(char *outbuf, int outbuf_size, char *inbuf, int inbuf_size)
|
||||
*o = '\0';
|
||||
return outbuf;
|
||||
}
|
||||
|
||||
// Set custom thread names
|
||||
int __visible
|
||||
set_thread_name(char name[16])
|
||||
{
|
||||
return prctl(PR_SET_NAME, name);
|
||||
}
|
||||
|
||||
@@ -7,5 +7,6 @@ void set_python_logging_callback(void (*func)(const char *));
|
||||
void errorf(const char *fmt, ...) __attribute__ ((format (printf, 1, 2)));
|
||||
void report_errno(char *where, int rc);
|
||||
char *dump_string(char *outbuf, int outbuf_size, char *inbuf, int inbuf_size);
|
||||
int set_thread_name(char name[16]);
|
||||
|
||||
#endif // pyhelper.h
|
||||
|
||||
@@ -43,6 +43,7 @@ struct serialqueue {
|
||||
uint8_t need_sync;
|
||||
int input_pos;
|
||||
// Threading
|
||||
char name[16];
|
||||
pthread_t tid;
|
||||
pthread_mutex_t lock; // protects variables below
|
||||
pthread_cond_t cond;
|
||||
@@ -612,6 +613,7 @@ static void *
|
||||
background_thread(void *data)
|
||||
{
|
||||
struct serialqueue *sq = data;
|
||||
set_thread_name(sq->name);
|
||||
pollreactor_run(sq->pr);
|
||||
|
||||
pthread_mutex_lock(&sq->lock);
|
||||
@@ -623,13 +625,16 @@ background_thread(void *data)
|
||||
|
||||
// Create a new 'struct serialqueue' object
|
||||
struct serialqueue * __visible
|
||||
serialqueue_alloc(int serial_fd, char serial_fd_type, int client_id)
|
||||
serialqueue_alloc(int serial_fd, char serial_fd_type, int client_id
|
||||
, char name[16])
|
||||
{
|
||||
struct serialqueue *sq = malloc(sizeof(*sq));
|
||||
memset(sq, 0, sizeof(*sq));
|
||||
sq->serial_fd = serial_fd;
|
||||
sq->serial_fd_type = serial_fd_type;
|
||||
sq->client_id = client_id;
|
||||
strncpy(sq->name, name, sizeof(sq->name));
|
||||
sq->name[sizeof(sq->name)-1] = '\0';
|
||||
|
||||
int ret = pipe(sq->pipe_fds);
|
||||
if (ret)
|
||||
|
||||
@@ -27,7 +27,7 @@ struct pull_queue_message {
|
||||
|
||||
struct serialqueue;
|
||||
struct serialqueue *serialqueue_alloc(int serial_fd, char serial_fd_type
|
||||
, int client_id);
|
||||
, int client_id, char name[16]);
|
||||
void serialqueue_exit(struct serialqueue *sq);
|
||||
void serialqueue_free(struct serialqueue *sq);
|
||||
struct command_queue *serialqueue_alloc_commandqueue(void);
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
// Stepper pulse schedule compression
|
||||
//
|
||||
// Copyright (C) 2016-2021 Kevin O'Connor <kevin@koconnor.net>
|
||||
// Copyright (C) 2016-2025 Kevin O'Connor <kevin@koconnor.net>
|
||||
//
|
||||
// This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
|
||||
@@ -21,6 +21,7 @@
|
||||
#include <stdlib.h> // malloc
|
||||
#include <string.h> // memset
|
||||
#include "compiler.h" // DIV_ROUND_UP
|
||||
#include "itersolve.h" // itersolve_generate_steps
|
||||
#include "pyhelper.h" // errorf
|
||||
#include "serialqueue.h" // struct queue_message
|
||||
#include "stepcompress.h" // stepcompress_alloc
|
||||
@@ -46,6 +47,8 @@ struct stepcompress {
|
||||
// History tracking
|
||||
int64_t last_position;
|
||||
struct list_head history_list;
|
||||
// Itersolve reference
|
||||
struct stepper_kinematics *sk;
|
||||
};
|
||||
|
||||
struct step_move {
|
||||
@@ -276,9 +279,9 @@ stepcompress_set_invert_sdir(struct stepcompress *sc, uint32_t invert_sdir)
|
||||
}
|
||||
}
|
||||
|
||||
// Helper to free items from the history_list
|
||||
static void
|
||||
free_history(struct stepcompress *sc, uint64_t end_clock)
|
||||
// Expire the stepcompress history older than the given clock
|
||||
void
|
||||
stepcompress_history_expire(struct stepcompress *sc, uint64_t end_clock)
|
||||
{
|
||||
while (!list_empty(&sc->history_list)) {
|
||||
struct history_steps *hs = list_last_entry(
|
||||
@@ -290,13 +293,6 @@ free_history(struct stepcompress *sc, uint64_t end_clock)
|
||||
}
|
||||
}
|
||||
|
||||
// Expire the stepcompress history older than the given clock
|
||||
static void
|
||||
stepcompress_history_expire(struct stepcompress *sc, uint64_t end_clock)
|
||||
{
|
||||
free_history(sc, end_clock);
|
||||
}
|
||||
|
||||
// Free memory associated with a 'stepcompress' object
|
||||
void __visible
|
||||
stepcompress_free(struct stepcompress *sc)
|
||||
@@ -305,7 +301,7 @@ stepcompress_free(struct stepcompress *sc)
|
||||
return;
|
||||
free(sc->queue);
|
||||
message_queue_free(&sc->msg_queue);
|
||||
free_history(sc, UINT64_MAX);
|
||||
stepcompress_history_expire(sc, UINT64_MAX);
|
||||
free(sc);
|
||||
}
|
||||
|
||||
@@ -321,6 +317,12 @@ stepcompress_get_step_dir(struct stepcompress *sc)
|
||||
return sc->next_step_dir;
|
||||
}
|
||||
|
||||
struct list_head *
|
||||
stepcompress_get_msg_queue(struct stepcompress *sc)
|
||||
{
|
||||
return &sc->msg_queue;
|
||||
}
|
||||
|
||||
// Determine the "print time" of the last_step_clock
|
||||
static void
|
||||
calc_last_step_print_time(struct stepcompress *sc)
|
||||
@@ -330,7 +332,7 @@ calc_last_step_print_time(struct stepcompress *sc)
|
||||
}
|
||||
|
||||
// Set the conversion rate of 'print_time' to mcu clock
|
||||
static void
|
||||
void
|
||||
stepcompress_set_time(struct stepcompress *sc
|
||||
, double time_offset, double mcu_freq)
|
||||
{
|
||||
@@ -664,164 +666,25 @@ stepcompress_extract_old(struct stepcompress *sc, struct pull_history_steps *p
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
/****************************************************************
|
||||
* Step compress synchronization
|
||||
****************************************************************/
|
||||
|
||||
// The steppersync object is used to synchronize the output of mcu
|
||||
// step commands. The mcu can only queue a limited number of step
|
||||
// commands - this code tracks when items on the mcu step queue become
|
||||
// free so that new commands can be transmitted. It also ensures the
|
||||
// mcu step queue is ordered between steppers so that no stepper
|
||||
// starves the other steppers of space in the mcu step queue.
|
||||
|
||||
struct steppersync {
|
||||
// Serial port
|
||||
struct serialqueue *sq;
|
||||
struct command_queue *cq;
|
||||
// Storage for associated stepcompress objects
|
||||
struct stepcompress **sc_list;
|
||||
int sc_num;
|
||||
// Storage for list of pending move clocks
|
||||
uint64_t *move_clocks;
|
||||
int num_move_clocks;
|
||||
};
|
||||
|
||||
// Allocate a new 'steppersync' object
|
||||
struct steppersync * __visible
|
||||
steppersync_alloc(struct serialqueue *sq, struct stepcompress **sc_list
|
||||
, int sc_num, int move_num)
|
||||
{
|
||||
struct steppersync *ss = malloc(sizeof(*ss));
|
||||
memset(ss, 0, sizeof(*ss));
|
||||
ss->sq = sq;
|
||||
ss->cq = serialqueue_alloc_commandqueue();
|
||||
|
||||
ss->sc_list = malloc(sizeof(*sc_list)*sc_num);
|
||||
memcpy(ss->sc_list, sc_list, sizeof(*sc_list)*sc_num);
|
||||
ss->sc_num = sc_num;
|
||||
|
||||
ss->move_clocks = malloc(sizeof(*ss->move_clocks)*move_num);
|
||||
memset(ss->move_clocks, 0, sizeof(*ss->move_clocks)*move_num);
|
||||
ss->num_move_clocks = move_num;
|
||||
|
||||
return ss;
|
||||
}
|
||||
|
||||
// Free memory associated with a 'steppersync' object
|
||||
// Store a reference to stepper_kinematics
|
||||
void __visible
|
||||
steppersync_free(struct steppersync *ss)
|
||||
stepcompress_set_stepper_kinematics(struct stepcompress *sc
|
||||
, struct stepper_kinematics *sk)
|
||||
{
|
||||
if (!ss)
|
||||
return;
|
||||
free(ss->sc_list);
|
||||
free(ss->move_clocks);
|
||||
serialqueue_free_commandqueue(ss->cq);
|
||||
free(ss);
|
||||
sc->sk = sk;
|
||||
}
|
||||
|
||||
// Set the conversion rate of 'print_time' to mcu clock
|
||||
void __visible
|
||||
steppersync_set_time(struct steppersync *ss, double time_offset
|
||||
, double mcu_freq)
|
||||
// Generate steps (via itersolve) and flush
|
||||
int32_t
|
||||
stepcompress_generate_steps(struct stepcompress *sc, double gen_steps_time
|
||||
, uint64_t flush_clock)
|
||||
{
|
||||
int i;
|
||||
for (i=0; i<ss->sc_num; i++) {
|
||||
struct stepcompress *sc = ss->sc_list[i];
|
||||
stepcompress_set_time(sc, time_offset, mcu_freq);
|
||||
}
|
||||
}
|
||||
|
||||
// Expire the stepcompress history before the given clock time
|
||||
static void
|
||||
steppersync_history_expire(struct steppersync *ss, uint64_t end_clock)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < ss->sc_num; i++)
|
||||
{
|
||||
struct stepcompress *sc = ss->sc_list[i];
|
||||
stepcompress_history_expire(sc, end_clock);
|
||||
}
|
||||
}
|
||||
|
||||
// Implement a binary heap algorithm to track when the next available
|
||||
// 'struct move' in the mcu will be available
|
||||
static void
|
||||
heap_replace(struct steppersync *ss, uint64_t req_clock)
|
||||
{
|
||||
uint64_t *mc = ss->move_clocks;
|
||||
int nmc = ss->num_move_clocks, pos = 0;
|
||||
for (;;) {
|
||||
int child1_pos = 2*pos+1, child2_pos = 2*pos+2;
|
||||
uint64_t child2_clock = child2_pos < nmc ? mc[child2_pos] : UINT64_MAX;
|
||||
uint64_t child1_clock = child1_pos < nmc ? mc[child1_pos] : UINT64_MAX;
|
||||
if (req_clock <= child1_clock && req_clock <= child2_clock) {
|
||||
mc[pos] = req_clock;
|
||||
break;
|
||||
}
|
||||
if (child1_clock < child2_clock) {
|
||||
mc[pos] = child1_clock;
|
||||
pos = child1_pos;
|
||||
} else {
|
||||
mc[pos] = child2_clock;
|
||||
pos = child2_pos;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find and transmit any scheduled steps prior to the given 'move_clock'
|
||||
int __visible
|
||||
steppersync_flush(struct steppersync *ss, uint64_t move_clock
|
||||
, uint64_t clear_history_clock)
|
||||
{
|
||||
// Flush each stepcompress to the specified move_clock
|
||||
int i;
|
||||
for (i=0; i<ss->sc_num; i++) {
|
||||
int ret = stepcompress_flush(ss->sc_list[i], move_clock);
|
||||
if (!sc->sk)
|
||||
return 0;
|
||||
// Generate steps
|
||||
int32_t ret = itersolve_generate_steps(sc->sk, sc, gen_steps_time);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Order commands by the reqclock of each pending command
|
||||
struct list_head msgs;
|
||||
list_init(&msgs);
|
||||
for (;;) {
|
||||
// Find message with lowest reqclock
|
||||
uint64_t req_clock = MAX_CLOCK;
|
||||
struct queue_message *qm = NULL;
|
||||
for (i=0; i<ss->sc_num; i++) {
|
||||
struct stepcompress *sc = ss->sc_list[i];
|
||||
if (!list_empty(&sc->msg_queue)) {
|
||||
struct queue_message *m = list_first_entry(
|
||||
&sc->msg_queue, struct queue_message, node);
|
||||
if (m->req_clock < req_clock) {
|
||||
qm = m;
|
||||
req_clock = m->req_clock;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!qm || (qm->min_clock && req_clock > move_clock))
|
||||
break;
|
||||
|
||||
uint64_t next_avail = ss->move_clocks[0];
|
||||
if (qm->min_clock)
|
||||
// The qm->min_clock field is overloaded to indicate that
|
||||
// the command uses the 'move queue' and to store the time
|
||||
// that move queue item becomes available.
|
||||
heap_replace(ss, qm->min_clock);
|
||||
// Reset the min_clock to its normal meaning (minimum transmit time)
|
||||
qm->min_clock = next_avail;
|
||||
|
||||
// Batch this command
|
||||
list_del(&qm->node);
|
||||
list_add_tail(&qm->node, &msgs);
|
||||
}
|
||||
|
||||
// Transmit commands
|
||||
if (!list_empty(&msgs))
|
||||
serialqueue_send_batch(ss->sq, ss->cq, &msgs);
|
||||
|
||||
steppersync_history_expire(ss, clear_history_clock);
|
||||
return 0;
|
||||
// Flush steps
|
||||
return stepcompress_flush(sc, flush_clock);
|
||||
}
|
||||
|
||||
@@ -17,9 +17,13 @@ void stepcompress_fill(struct stepcompress *sc, uint32_t max_error
|
||||
, int32_t set_next_step_dir_msgtag);
|
||||
void stepcompress_set_invert_sdir(struct stepcompress *sc
|
||||
, uint32_t invert_sdir);
|
||||
void stepcompress_history_expire(struct stepcompress *sc, uint64_t end_clock);
|
||||
void stepcompress_free(struct stepcompress *sc);
|
||||
uint32_t stepcompress_get_oid(struct stepcompress *sc);
|
||||
int stepcompress_get_step_dir(struct stepcompress *sc);
|
||||
struct list_head *stepcompress_get_msg_queue(struct stepcompress *sc);
|
||||
void stepcompress_set_time(struct stepcompress *sc
|
||||
, double time_offset, double mcu_freq);
|
||||
int stepcompress_append(struct stepcompress *sc, int sdir
|
||||
, double print_time, double step_time);
|
||||
int stepcompress_commit(struct stepcompress *sc);
|
||||
@@ -34,15 +38,11 @@ int stepcompress_queue_mq_msg(struct stepcompress *sc, uint64_t req_clock
|
||||
int stepcompress_extract_old(struct stepcompress *sc
|
||||
, struct pull_history_steps *p, int max
|
||||
, uint64_t start_clock, uint64_t end_clock);
|
||||
|
||||
struct serialqueue;
|
||||
struct steppersync *steppersync_alloc(
|
||||
struct serialqueue *sq, struct stepcompress **sc_list, int sc_num
|
||||
, int move_num);
|
||||
void steppersync_free(struct steppersync *ss);
|
||||
void steppersync_set_time(struct steppersync *ss, double time_offset
|
||||
, double mcu_freq);
|
||||
int steppersync_flush(struct steppersync *ss, uint64_t move_clock
|
||||
, uint64_t clear_history_clock);
|
||||
struct stepper_kinematics;
|
||||
void stepcompress_set_stepper_kinematics(struct stepcompress *sc
|
||||
, struct stepper_kinematics *sk);
|
||||
int32_t stepcompress_generate_steps(struct stepcompress *sc
|
||||
, double gen_steps_time
|
||||
, uint64_t flush_clock);
|
||||
|
||||
#endif // stepcompress.h
|
||||
|
||||
177
klippy/chelper/steppersync.c
Normal file
177
klippy/chelper/steppersync.c
Normal file
@@ -0,0 +1,177 @@
|
||||
// Stepper step transmit synchronization
|
||||
//
|
||||
// Copyright (C) 2016-2025 Kevin O'Connor <kevin@koconnor.net>
|
||||
//
|
||||
// This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
|
||||
// The steppersync object is used to synchronize the output of mcu
|
||||
// step commands. The mcu can only queue a limited number of step
|
||||
// commands - this code tracks when items on the mcu step queue become
|
||||
// free so that new commands can be transmitted. It also ensures the
|
||||
// mcu step queue is ordered between steppers so that no stepper
|
||||
// starves the other steppers of space in the mcu step queue.
|
||||
|
||||
#include <stddef.h> // offsetof
|
||||
#include <stdlib.h> // malloc
|
||||
#include <string.h> // memset
|
||||
#include "compiler.h" // __visible
|
||||
#include "serialqueue.h" // struct queue_message
|
||||
#include "stepcompress.h" // stepcompress_flush
|
||||
#include "steppersync.h" // steppersync_alloc
|
||||
|
||||
struct steppersync {
|
||||
// Serial port
|
||||
struct serialqueue *sq;
|
||||
struct command_queue *cq;
|
||||
// Storage for associated stepcompress objects
|
||||
struct stepcompress **sc_list;
|
||||
int sc_num;
|
||||
// Storage for list of pending move clocks
|
||||
uint64_t *move_clocks;
|
||||
int num_move_clocks;
|
||||
};
|
||||
|
||||
// Allocate a new 'steppersync' object
|
||||
struct steppersync * __visible
|
||||
steppersync_alloc(struct serialqueue *sq, struct stepcompress **sc_list
|
||||
, int sc_num, int move_num)
|
||||
{
|
||||
struct steppersync *ss = malloc(sizeof(*ss));
|
||||
memset(ss, 0, sizeof(*ss));
|
||||
ss->sq = sq;
|
||||
ss->cq = serialqueue_alloc_commandqueue();
|
||||
|
||||
ss->sc_list = malloc(sizeof(*sc_list)*sc_num);
|
||||
memcpy(ss->sc_list, sc_list, sizeof(*sc_list)*sc_num);
|
||||
ss->sc_num = sc_num;
|
||||
|
||||
ss->move_clocks = malloc(sizeof(*ss->move_clocks)*move_num);
|
||||
memset(ss->move_clocks, 0, sizeof(*ss->move_clocks)*move_num);
|
||||
ss->num_move_clocks = move_num;
|
||||
|
||||
return ss;
|
||||
}
|
||||
|
||||
// Free memory associated with a 'steppersync' object
|
||||
void __visible
|
||||
steppersync_free(struct steppersync *ss)
|
||||
{
|
||||
if (!ss)
|
||||
return;
|
||||
free(ss->sc_list);
|
||||
free(ss->move_clocks);
|
||||
serialqueue_free_commandqueue(ss->cq);
|
||||
free(ss);
|
||||
}
|
||||
|
||||
// Set the conversion rate of 'print_time' to mcu clock
|
||||
void __visible
|
||||
steppersync_set_time(struct steppersync *ss, double time_offset
|
||||
, double mcu_freq)
|
||||
{
|
||||
int i;
|
||||
for (i=0; i<ss->sc_num; i++) {
|
||||
struct stepcompress *sc = ss->sc_list[i];
|
||||
stepcompress_set_time(sc, time_offset, mcu_freq);
|
||||
}
|
||||
}
|
||||
|
||||
// Generate steps and flush stepcompress objects
|
||||
int32_t __visible
|
||||
steppersync_generate_steps(struct steppersync *ss, double gen_steps_time
|
||||
, uint64_t flush_clock)
|
||||
{
|
||||
int i;
|
||||
for (i=0; i<ss->sc_num; i++) {
|
||||
struct stepcompress *sc = ss->sc_list[i];
|
||||
int32_t ret = stepcompress_generate_steps(sc, gen_steps_time
|
||||
, flush_clock);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Expire the stepcompress history before the given clock time
|
||||
void __visible
|
||||
steppersync_history_expire(struct steppersync *ss, uint64_t end_clock)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < ss->sc_num; i++) {
|
||||
struct stepcompress *sc = ss->sc_list[i];
|
||||
stepcompress_history_expire(sc, end_clock);
|
||||
}
|
||||
}
|
||||
|
||||
// Implement a binary heap algorithm to track when the next available
|
||||
// 'struct move' in the mcu will be available
|
||||
static void
|
||||
heap_replace(struct steppersync *ss, uint64_t req_clock)
|
||||
{
|
||||
uint64_t *mc = ss->move_clocks;
|
||||
int nmc = ss->num_move_clocks, pos = 0;
|
||||
for (;;) {
|
||||
int child1_pos = 2*pos+1, child2_pos = 2*pos+2;
|
||||
uint64_t child2_clock = child2_pos < nmc ? mc[child2_pos] : UINT64_MAX;
|
||||
uint64_t child1_clock = child1_pos < nmc ? mc[child1_pos] : UINT64_MAX;
|
||||
if (req_clock <= child1_clock && req_clock <= child2_clock) {
|
||||
mc[pos] = req_clock;
|
||||
break;
|
||||
}
|
||||
if (child1_clock < child2_clock) {
|
||||
mc[pos] = child1_clock;
|
||||
pos = child1_pos;
|
||||
} else {
|
||||
mc[pos] = child2_clock;
|
||||
pos = child2_pos;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find and transmit any scheduled steps prior to the given 'move_clock'
|
||||
int __visible
|
||||
steppersync_flush(struct steppersync *ss, uint64_t move_clock)
|
||||
{
|
||||
// Order commands by the reqclock of each pending command
|
||||
struct list_head msgs;
|
||||
list_init(&msgs);
|
||||
for (;;) {
|
||||
// Find message with lowest reqclock
|
||||
uint64_t req_clock = MAX_CLOCK;
|
||||
struct queue_message *qm = NULL;
|
||||
int i;
|
||||
for (i=0; i<ss->sc_num; i++) {
|
||||
struct stepcompress *sc = ss->sc_list[i];
|
||||
struct list_head *sc_mq = stepcompress_get_msg_queue(sc);
|
||||
if (!list_empty(sc_mq)) {
|
||||
struct queue_message *m = list_first_entry(
|
||||
sc_mq, struct queue_message, node);
|
||||
if (m->req_clock < req_clock) {
|
||||
qm = m;
|
||||
req_clock = m->req_clock;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!qm || (qm->min_clock && req_clock > move_clock))
|
||||
break;
|
||||
|
||||
uint64_t next_avail = ss->move_clocks[0];
|
||||
if (qm->min_clock)
|
||||
// The qm->min_clock field is overloaded to indicate that
|
||||
// the command uses the 'move queue' and to store the time
|
||||
// that move queue item becomes available.
|
||||
heap_replace(ss, qm->min_clock);
|
||||
// Reset the min_clock to its normal meaning (minimum transmit time)
|
||||
qm->min_clock = next_avail;
|
||||
|
||||
// Batch this command
|
||||
list_del(&qm->node);
|
||||
list_add_tail(&qm->node, &msgs);
|
||||
}
|
||||
|
||||
// Transmit commands
|
||||
if (!list_empty(&msgs))
|
||||
serialqueue_send_batch(ss->sq, ss->cq, &msgs);
|
||||
|
||||
return 0;
|
||||
}
|
||||
18
klippy/chelper/steppersync.h
Normal file
18
klippy/chelper/steppersync.h
Normal file
@@ -0,0 +1,18 @@
|
||||
#ifndef STEPPERSYNC_H
|
||||
#define STEPPERSYNC_H
|
||||
|
||||
#include <stdint.h> // uint64_t
|
||||
|
||||
struct serialqueue;
|
||||
struct steppersync *steppersync_alloc(
|
||||
struct serialqueue *sq, struct stepcompress **sc_list, int sc_num
|
||||
, int move_num);
|
||||
void steppersync_free(struct steppersync *ss);
|
||||
void steppersync_set_time(struct steppersync *ss, double time_offset
|
||||
, double mcu_freq);
|
||||
int32_t steppersync_generate_steps(struct steppersync *ss, double gen_steps_time
|
||||
, uint64_t flush_clock);
|
||||
void steppersync_history_expire(struct steppersync *ss, uint64_t end_clock);
|
||||
int steppersync_flush(struct steppersync *ss, uint64_t move_clock);
|
||||
|
||||
#endif // steppersync.h
|
||||
@@ -95,11 +95,8 @@ class ADS1220:
|
||||
self.batch_bulk = bulk_sensor.BatchBulkHelper(
|
||||
self.printer, self._process_batch, self._start_measurements,
|
||||
self._finish_measurements, UPDATE_INTERVAL)
|
||||
# publish raw samples to the socket
|
||||
hdr = {'header': ('time', 'counts', 'value')}
|
||||
self.batch_bulk.add_mux_endpoint("ads1220/dump_ads1220", "sensor",
|
||||
self.name, hdr)
|
||||
# Command Configuration
|
||||
self.attach_probe_cmd = None
|
||||
mcu.add_config_cmd(
|
||||
"config_ads1220 oid=%d spi_oid=%d data_ready_pin=%s"
|
||||
% (self.oid, self.spi.get_oid(), self.data_ready_pin))
|
||||
@@ -112,6 +109,8 @@ class ADS1220:
|
||||
cmdqueue = self.spi.get_command_queue()
|
||||
self.query_ads1220_cmd = self.mcu.lookup_command(
|
||||
"query_ads1220 oid=%c rest_ticks=%u", cq=cmdqueue)
|
||||
self.attach_probe_cmd = self.mcu.lookup_command(
|
||||
"ads1220_attach_load_cell_probe oid=%c load_cell_probe_oid=%c")
|
||||
self.ffreader.setup_query_command("query_ads1220_status oid=%c",
|
||||
oid=self.oid, cq=cmdqueue)
|
||||
|
||||
@@ -130,6 +129,9 @@ class ADS1220:
|
||||
def add_client(self, callback):
|
||||
self.batch_bulk.add_client(callback)
|
||||
|
||||
def attach_load_cell_probe(self, load_cell_probe_oid):
|
||||
self.attach_probe_cmd.send([self.oid, load_cell_probe_oid])
|
||||
|
||||
# Measurement decoding
|
||||
def _convert_samples(self, samples):
|
||||
adc_factor = 1. / (1 << 23)
|
||||
|
||||
@@ -210,28 +210,28 @@ class ADS1X1X_chip:
|
||||
raise pins.error('ADS1x1x pin %s is not valid' % \
|
||||
pin_params['pin'])
|
||||
|
||||
config = 0
|
||||
config |= (ADS1X1X_OS['OS_SINGLE'] & \
|
||||
pcfg = 0
|
||||
pcfg |= (ADS1X1X_OS['OS_SINGLE'] & \
|
||||
ADS1X1X_REG_CONFIG['OS_MASK'])
|
||||
config |= (ADS1X1X_MUX[pin_params['pin']] & \
|
||||
pcfg |= (ADS1X1X_MUX[pin_params['pin']] & \
|
||||
ADS1X1X_REG_CONFIG['MULTIPLEXER_MASK'])
|
||||
config |= (self.pga & ADS1X1X_REG_CONFIG['PGA_MASK'])
|
||||
pcfg |= (self.pga & ADS1X1X_REG_CONFIG['PGA_MASK'])
|
||||
# Have to use single mode, because in continuous, it never reaches
|
||||
# idle state, which we use to determine if the sampling is done.
|
||||
config |= (ADS1X1X_MODE['single'] & \
|
||||
pcfg |= (ADS1X1X_MODE['single'] & \
|
||||
ADS1X1X_REG_CONFIG['MODE_MASK'])
|
||||
# lowest sample rate per default, until report time has been set in
|
||||
# setup_adc_sample
|
||||
config |= (self.comp_mode \
|
||||
pcfg |= (self.comp_mode \
|
||||
& ADS1X1X_REG_CONFIG['COMPARATOR_MODE_MASK'])
|
||||
config |= (self.comp_polarity \
|
||||
pcfg |= (self.comp_polarity \
|
||||
& ADS1X1X_REG_CONFIG['COMPARATOR_POLARITY_MASK'])
|
||||
config |= (self.comp_latching \
|
||||
pcfg |= (self.comp_latching \
|
||||
& ADS1X1X_REG_CONFIG['COMPARATOR_LATCHING_MASK'])
|
||||
config |= (self.comp_queue \
|
||||
pcfg |= (self.comp_queue \
|
||||
& ADS1X1X_REG_CONFIG['COMPARATOR_QUEUE_MASK'])
|
||||
|
||||
pin_obj = ADS1X1X_pin(self, config)
|
||||
pin_obj = ADS1X1X_pin(self, pcfg)
|
||||
if pin in self._pins:
|
||||
raise pins.error(
|
||||
'pin %s for chip %s is used multiple times' \
|
||||
@@ -250,8 +250,8 @@ class ADS1X1X_chip:
|
||||
logging.exception("ADS1X1X: error while resetting device")
|
||||
|
||||
def is_ready(self):
|
||||
config = self._read_register(ADS1X1X_REG_POINTER['CONFIG'])
|
||||
return bool((config & ADS1X1X_REG_CONFIG['OS_MASK']) == \
|
||||
cfg = self._read_register(ADS1X1X_REG_POINTER['CONFIG'])
|
||||
return bool((cfg & ADS1X1X_REG_CONFIG['OS_MASK']) == \
|
||||
ADS1X1X_OS['OS_IDLE'])
|
||||
|
||||
def calculate_sample_rate(self):
|
||||
@@ -281,7 +281,7 @@ class ADS1X1X_chip:
|
||||
(sample_rate, sample_rate_bits) = self.calculate_sample_rate()
|
||||
|
||||
for pin in self._pins.values():
|
||||
pin.config = (pin.config & ~ADS1X1X_REG_CONFIG['DATA_RATE_MASK']) \
|
||||
pin.pcfg = (pin.pcfg & ~ADS1X1X_REG_CONFIG['DATA_RATE_MASK']) \
|
||||
| (sample_rate_bits & ADS1X1X_REG_CONFIG['DATA_RATE_MASK'])
|
||||
|
||||
self.delay = 1 / float(sample_rate)
|
||||
@@ -289,7 +289,7 @@ class ADS1X1X_chip:
|
||||
def sample(self, pin):
|
||||
with self._mutex:
|
||||
try:
|
||||
self._write_register(ADS1X1X_REG_POINTER['CONFIG'], pin.config)
|
||||
self._write_register(ADS1X1X_REG_POINTER['CONFIG'], pin.pcfg)
|
||||
self._reactor.pause(self._reactor.monotonic() + self.delay)
|
||||
start_time = self._reactor.monotonic()
|
||||
while not self.is_ready():
|
||||
@@ -318,10 +318,10 @@ class ADS1X1X_chip:
|
||||
self._i2c.i2c_write(data)
|
||||
|
||||
class ADS1X1X_pin:
|
||||
def __init__(self, chip, config):
|
||||
def __init__(self, chip, pcfg):
|
||||
self.mcu = chip.mcu
|
||||
self.chip = chip
|
||||
self.config = config
|
||||
self.pcfg = pcfg
|
||||
|
||||
self.invalid_count = 0
|
||||
|
||||
|
||||
@@ -166,12 +166,12 @@ class AccelCommandHelper:
|
||||
% (accel_x, accel_y, accel_z))
|
||||
cmd_ACCELEROMETER_DEBUG_READ_help = "Query register (for debugging)"
|
||||
def cmd_ACCELEROMETER_DEBUG_READ(self, gcmd):
|
||||
reg = gcmd.get("REG", minval=0, maxval=126, parser=lambda x: int(x, 0))
|
||||
reg = gcmd.get("REG", minval=0, maxval=127, parser=lambda x: int(x, 0))
|
||||
val = self.chip.read_reg(reg)
|
||||
gcmd.respond_info("Accelerometer REG[0x%x] = 0x%x" % (reg, val))
|
||||
cmd_ACCELEROMETER_DEBUG_WRITE_help = "Set register (for debugging)"
|
||||
def cmd_ACCELEROMETER_DEBUG_WRITE(self, gcmd):
|
||||
reg = gcmd.get("REG", minval=0, maxval=126, parser=lambda x: int(x, 0))
|
||||
reg = gcmd.get("REG", minval=0, maxval=127, parser=lambda x: int(x, 0))
|
||||
val = gcmd.get("VAL", minval=0, maxval=255, parser=lambda x: int(x, 0))
|
||||
self.chip.set_reg(reg, val)
|
||||
|
||||
|
||||
@@ -97,7 +97,7 @@ class AngleCalibration:
|
||||
return None
|
||||
return self.mcu_stepper.mcu_to_commanded_position(self.mcu_pos_offset)
|
||||
def load_calibration(self, angles):
|
||||
# Calculate linear intepolation calibration buckets by solving
|
||||
# Calculate linear interpolation calibration buckets by solving
|
||||
# linear equations
|
||||
angle_max = 1 << ANGLE_BITS
|
||||
calibration_count = 1 << CALIBRATION_BITS
|
||||
|
||||
@@ -125,9 +125,8 @@ class Calibrater:
|
||||
|
||||
def _handle_connect(self):
|
||||
self.probe = self.printer.lookup_object('probe', None)
|
||||
if (self.probe is None):
|
||||
config = self.printer.lookup_object('configfile')
|
||||
raise config.error(
|
||||
if self.probe is None:
|
||||
raise self.printer.config_error(
|
||||
"AXIS_TWIST_COMPENSATION requires [probe] to be defined")
|
||||
self.lift_speed = self.probe.get_probe_params()['lift_speed']
|
||||
self.probe_x_offset, self.probe_y_offset, _ = \
|
||||
@@ -150,20 +149,7 @@ class Calibrater:
|
||||
def cmd_AXIS_TWIST_COMPENSATION_CALIBRATE(self, gcmd):
|
||||
self.gcmd = gcmd
|
||||
sample_count = gcmd.get_int('SAMPLE_COUNT', DEFAULT_SAMPLE_COUNT)
|
||||
axis = gcmd.get('AXIS', None)
|
||||
auto = gcmd.get('AUTO', False)
|
||||
|
||||
if axis is not None and auto:
|
||||
raise self.gcmd.error(
|
||||
"Cannot use both 'AXIS' and 'AUTO' at the same time."
|
||||
)
|
||||
|
||||
if auto:
|
||||
self._start_autocalibration(sample_count)
|
||||
return
|
||||
|
||||
if axis is None and not auto:
|
||||
axis = 'X'
|
||||
axis = gcmd.get('AXIS', 'X')
|
||||
|
||||
# check for valid sample_count
|
||||
if sample_count < 2:
|
||||
@@ -244,153 +230,6 @@ class Calibrater:
|
||||
self.current_axis = axis
|
||||
self._calibration(probe_points, nozzle_points, interval_dist)
|
||||
|
||||
def _calculate_corrections(self, coordinates):
|
||||
# Extracting x, y, and z values from coordinates
|
||||
x_coords = [coord[0] for coord in coordinates]
|
||||
y_coords = [coord[1] for coord in coordinates]
|
||||
z_coords = [coord[2] for coord in coordinates]
|
||||
|
||||
# Calculate the desired point (average of all corner points in z)
|
||||
# For a general case, we should extract the unique
|
||||
# combinations of corner points
|
||||
z_corners = [z_coords[i] for i, coord in enumerate(coordinates)
|
||||
if (coord[0] in [x_coords[0], x_coords[-1]])
|
||||
and (coord[1] in [y_coords[0], y_coords[-1]])]
|
||||
z_desired = sum(z_corners) / len(z_corners)
|
||||
|
||||
|
||||
# Calculate average deformation per axis
|
||||
unique_x_coords = sorted(set(x_coords))
|
||||
unique_y_coords = sorted(set(y_coords))
|
||||
|
||||
avg_z_x = []
|
||||
for x in unique_x_coords:
|
||||
indices = [i for i, coord in enumerate(coordinates)
|
||||
if coord[0] == x]
|
||||
avg_z = sum(z_coords[i] for i in indices) / len(indices)
|
||||
avg_z_x.append(avg_z)
|
||||
|
||||
avg_z_y = []
|
||||
for y in unique_y_coords:
|
||||
indices = [i for i, coord in enumerate(coordinates)
|
||||
if coord[1] == y]
|
||||
avg_z = sum(z_coords[i] for i in indices) / len(indices)
|
||||
avg_z_y.append(avg_z)
|
||||
|
||||
# Calculate corrections to reach the desired point
|
||||
x_corrections = [z_desired - avg for avg in avg_z_x]
|
||||
y_corrections = [z_desired - avg for avg in avg_z_y]
|
||||
|
||||
return x_corrections, y_corrections
|
||||
|
||||
def _start_autocalibration(self, sample_count):
|
||||
|
||||
if not all([
|
||||
self.x_start_point[0],
|
||||
self.x_end_point[0],
|
||||
self.y_start_point[0],
|
||||
self.y_end_point[0]
|
||||
]):
|
||||
raise self.gcmd.error(
|
||||
"""AXIS_TWIST_COMPENSATION_AUTOCALIBRATE requires
|
||||
calibrate_start_x, calibrate_end_x, calibrate_start_y
|
||||
and calibrate_end_y to be defined
|
||||
"""
|
||||
)
|
||||
|
||||
# check for valid sample_count
|
||||
if sample_count is None or sample_count < 2:
|
||||
raise self.gcmd.error(
|
||||
"SAMPLE_COUNT to probe must be at least 2")
|
||||
|
||||
# verify no other manual probe is in progress
|
||||
manual_probe.verify_no_manual_probe(self.printer)
|
||||
|
||||
# clear the current config
|
||||
self.compensation.clear_compensations()
|
||||
|
||||
min_x = self.x_start_point[0]
|
||||
max_x = self.x_end_point[0]
|
||||
min_y = self.y_start_point[1]
|
||||
max_y = self.y_end_point[1]
|
||||
|
||||
# calculate x positions
|
||||
interval_x = (max_x - min_x) / (sample_count - 1)
|
||||
xps = [min_x + interval_x * i for i in range(sample_count)]
|
||||
|
||||
# Calculate points array
|
||||
interval_y = (max_y - min_y) / (sample_count - 1)
|
||||
flip = False
|
||||
|
||||
points = []
|
||||
for i in range(sample_count):
|
||||
for j in range(sample_count):
|
||||
if(not flip):
|
||||
idx = j
|
||||
else:
|
||||
idx = sample_count -1 - j
|
||||
points.append([xps[i], min_y + interval_y * idx ])
|
||||
flip = not flip
|
||||
|
||||
|
||||
# calculate the points to put the nozzle at, and probe
|
||||
probe_points = []
|
||||
|
||||
for i in range(len(points)):
|
||||
x = points[i][0] - self.probe_x_offset
|
||||
y = points[i][1] - self.probe_y_offset
|
||||
probe_points.append([x, y, self._auto_calibration((x,y))[2]])
|
||||
|
||||
# calculate corrections
|
||||
x_corr, y_corr = self._calculate_corrections(probe_points)
|
||||
|
||||
x_corr_str = ', '.join(["{:.6f}".format(x)
|
||||
for x in x_corr])
|
||||
|
||||
y_corr_str = ', '.join(["{:.6f}".format(x)
|
||||
for x in y_corr])
|
||||
|
||||
# finalize
|
||||
configfile = self.printer.lookup_object('configfile')
|
||||
configfile.set(self.configname, 'z_compensations', x_corr_str)
|
||||
configfile.set(self.configname, 'compensation_start_x',
|
||||
self.x_start_point[0])
|
||||
configfile.set(self.configname, 'compensation_end_x',
|
||||
self.x_end_point[0])
|
||||
|
||||
|
||||
configfile.set(self.configname, 'zy_compensations', y_corr_str)
|
||||
configfile.set(self.configname, 'compensation_start_y',
|
||||
self.y_start_point[1])
|
||||
configfile.set(self.configname, 'compensation_end_y',
|
||||
self.y_end_point[1])
|
||||
|
||||
self.gcode.respond_info(
|
||||
"AXIS_TWIST_COMPENSATION state has been saved "
|
||||
"for the current session. The SAVE_CONFIG command will "
|
||||
"update the printer config file and restart the printer.")
|
||||
# output result
|
||||
self.gcmd.respond_info(
|
||||
"AXIS_TWIST_COMPENSATION_AUTOCALIBRATE: Calibration complete: ")
|
||||
self.gcmd.respond_info("\n".join(map(str, [x_corr, y_corr])), log=False)
|
||||
|
||||
def _auto_calibration(self, probe_point):
|
||||
|
||||
# horizontal_move_z (to prevent probe trigger or hitting bed)
|
||||
self._move_helper((None, None, self.horizontal_move_z))
|
||||
|
||||
# move to point to probe
|
||||
self._move_helper((probe_point[0],
|
||||
probe_point[1], None))
|
||||
|
||||
# probe the point
|
||||
pos = probe.run_single_probe(self.probe, self.gcmd)
|
||||
|
||||
# horizontal_move_z (to prevent probe trigger or hitting bed)
|
||||
self._move_helper((None, None, self.horizontal_move_z))
|
||||
|
||||
return pos
|
||||
|
||||
def _calculate_probe_points(self, nozzle_points,
|
||||
probe_x_offset, probe_y_offset):
|
||||
# calculate the points to put the nozzle at
|
||||
|
||||
@@ -34,7 +34,7 @@ def constrain(val, min_val, max_val):
|
||||
def lerp(t, v0, v1):
|
||||
return (1. - t) * v0 + t * v1
|
||||
|
||||
# retreive commma separated pair from config
|
||||
# retrieve comma separated pair from config
|
||||
def parse_config_pair(config, option, default, minval=None, maxval=None):
|
||||
pair = config.getintlist(option, (default, default))
|
||||
if len(pair) != 2:
|
||||
@@ -54,7 +54,7 @@ def parse_config_pair(config, option, default, minval=None, maxval=None):
|
||||
% (option, str(maxval)))
|
||||
return pair
|
||||
|
||||
# retreive commma separated pair from a g-code command
|
||||
# retrieve comma separated pair from a g-code command
|
||||
def parse_gcmd_pair(gcmd, name, minval=None, maxval=None):
|
||||
try:
|
||||
pair = [int(v.strip()) for v in gcmd.get(name).split(',')]
|
||||
@@ -74,7 +74,7 @@ def parse_gcmd_pair(gcmd, name, minval=None, maxval=None):
|
||||
% (name, maxval))
|
||||
return pair
|
||||
|
||||
# retreive commma separated coordinate from a g-code command
|
||||
# retrieve comma separated coordinate from a g-code command
|
||||
def parse_gcmd_coord(gcmd, name):
|
||||
try:
|
||||
v1, v2 = [float(v.strip()) for v in gcmd.get(name).split(',')]
|
||||
@@ -133,7 +133,7 @@ class BedMesh:
|
||||
self.update_status()
|
||||
def handle_connect(self):
|
||||
self.toolhead = self.printer.lookup_object('toolhead')
|
||||
self.bmc.print_generated_points(logging.info)
|
||||
self.bmc.print_generated_points(logging.info, truncate=True)
|
||||
def set_mesh(self, mesh):
|
||||
if mesh is not None and self.fade_end != self.FADE_DISABLE:
|
||||
self.log_fade_complete = True
|
||||
@@ -186,7 +186,8 @@ class BedMesh:
|
||||
self.last_position[2] -= self.fade_target
|
||||
else:
|
||||
# return current position minus the current z-adjustment
|
||||
x, y, z, e = self.toolhead.get_position()
|
||||
cur_pos = self.toolhead.get_position()
|
||||
x, y, z = cur_pos[:3]
|
||||
max_adj = self.z_mesh.calc_z(x, y)
|
||||
factor = 1.
|
||||
z_adj = max_adj - self.fade_target
|
||||
@@ -202,19 +203,19 @@ class BedMesh:
|
||||
(self.fade_dist - z_adj))
|
||||
factor = constrain(factor, 0., 1.)
|
||||
final_z_adj = factor * z_adj + self.fade_target
|
||||
self.last_position[:] = [x, y, z - final_z_adj, e]
|
||||
self.last_position[:] = [x, y, z - final_z_adj] + cur_pos[3:]
|
||||
return list(self.last_position)
|
||||
def move(self, newpos, speed):
|
||||
factor = self.get_z_factor(newpos[2])
|
||||
if self.z_mesh is None or not factor:
|
||||
# No mesh calibrated, or mesh leveling phased out.
|
||||
x, y, z, e = newpos
|
||||
x, y, z = newpos[:3]
|
||||
if self.log_fade_complete:
|
||||
self.log_fade_complete = False
|
||||
logging.info(
|
||||
"bed_mesh fade complete: Current Z: %.4f fade_target: %.4f "
|
||||
% (z, self.fade_target))
|
||||
self.toolhead.move([x, y, z + self.fade_target, e], speed)
|
||||
self.toolhead.move([x, y, z + self.fade_target] + newpos[3:], speed)
|
||||
else:
|
||||
self.splitter.build_move(self.last_position, newpos, factor)
|
||||
while not self.splitter.traverse_complete:
|
||||
@@ -346,7 +347,7 @@ class BedMeshCalibrate:
|
||||
self.gcode.register_command(
|
||||
'BED_MESH_CALIBRATE', self.cmd_BED_MESH_CALIBRATE,
|
||||
desc=self.cmd_BED_MESH_CALIBRATE_help)
|
||||
def print_generated_points(self, print_func):
|
||||
def print_generated_points(self, print_func, truncate=False):
|
||||
x_offset = y_offset = 0.
|
||||
probe = self.printer.lookup_object('probe', None)
|
||||
if probe is not None:
|
||||
@@ -355,6 +356,10 @@ class BedMeshCalibrate:
|
||||
" | Tool Adjusted | Probe")
|
||||
points = self.probe_mgr.get_base_points()
|
||||
for i, (x, y) in enumerate(points):
|
||||
if i >= 50 and truncate:
|
||||
end = len(points) - 1
|
||||
print_func("...points %d through %d truncated" % (i, end))
|
||||
break
|
||||
adj_pt = "(%.1f, %.1f)" % (x - x_offset, y - y_offset)
|
||||
mesh_pt = "(%.1f, %.1f)" % (x, y)
|
||||
print_func(
|
||||
@@ -613,8 +618,6 @@ class BedMeshCalibrate:
|
||||
self.mesh_config, self.mesh_min, self.mesh_max,
|
||||
self.radius, self.origin, probe_method
|
||||
)
|
||||
gcmd.respond_info("Generating new points...")
|
||||
self.print_generated_points(gcmd.respond_info)
|
||||
msg = "\n".join(["%s: %s" % (k, v)
|
||||
for k, v in self.mesh_config.items()])
|
||||
logging.info("Updated Mesh Configuration:\n" + msg)
|
||||
@@ -911,7 +914,7 @@ class ProbeManager:
|
||||
for i in range(y_cnt):
|
||||
for j in range(x_cnt):
|
||||
if not i % 2:
|
||||
# move in positive directon
|
||||
# move in positive direction
|
||||
pos_x = min_x + j * x_dist
|
||||
else:
|
||||
# move in negative direction
|
||||
@@ -1161,7 +1164,7 @@ class ProbeManager:
|
||||
|
||||
def _gen_arc(self, origin, radius, start, step, count):
|
||||
end = start + step * count
|
||||
# create a segent for every 3 degress of travel
|
||||
# create a segent for every 3 degrees of travel
|
||||
for angle in range(start, end, step):
|
||||
rad = math.radians(angle % 360)
|
||||
opp = math.sin(rad) * radius
|
||||
@@ -1271,7 +1274,7 @@ class MoveSplitter:
|
||||
self.z_offset = self._calc_z_offset(prev_pos)
|
||||
self.traverse_complete = False
|
||||
self.distance_checked = 0.
|
||||
axes_d = [self.next_pos[i] - self.prev_pos[i] for i in range(4)]
|
||||
axes_d = [np - pp for np, pp in zip(self.next_pos, self.prev_pos)]
|
||||
self.total_move_length = math.sqrt(sum([d*d for d in axes_d[:3]]))
|
||||
self.axis_move = [not isclose(d, 0., abs_tol=1e-10) for d in axes_d]
|
||||
def _calc_z_offset(self, pos):
|
||||
@@ -1284,7 +1287,7 @@ class MoveSplitter:
|
||||
raise self.gcode.error(
|
||||
"bed_mesh: Slice distance is negative "
|
||||
"or greater than entire move length")
|
||||
for i in range(4):
|
||||
for i in range(len(self.next_pos)):
|
||||
if self.axis_move[i]:
|
||||
self.current_pos[i] = lerp(
|
||||
t, self.prev_pos[i], self.next_pos[i])
|
||||
@@ -1299,9 +1302,9 @@ class MoveSplitter:
|
||||
next_z = self._calc_z_offset(self.current_pos)
|
||||
if abs(next_z - self.z_offset) >= self.split_delta_z:
|
||||
self.z_offset = next_z
|
||||
return self.current_pos[0], self.current_pos[1], \
|
||||
self.current_pos[2] + self.z_offset, \
|
||||
self.current_pos[3]
|
||||
newpos = list(self.current_pos)
|
||||
newpos[2] += self.z_offset
|
||||
return newpos
|
||||
# end of move reached
|
||||
self.current_pos[:] = self.next_pos
|
||||
self.z_offset = self._calc_z_offset(self.current_pos)
|
||||
|
||||
@@ -24,12 +24,14 @@ class BedTilt:
|
||||
def handle_connect(self):
|
||||
self.toolhead = self.printer.lookup_object('toolhead')
|
||||
def get_position(self):
|
||||
x, y, z, e = self.toolhead.get_position()
|
||||
return [x, y, z - x*self.x_adjust - y*self.y_adjust - self.z_adjust, e]
|
||||
pos = self.toolhead.get_position()
|
||||
x, y, z = pos[:3]
|
||||
z -= x*self.x_adjust + y*self.y_adjust + self.z_adjust
|
||||
return [x, y, z] + pos[3:]
|
||||
def move(self, newpos, speed):
|
||||
x, y, z, e = newpos
|
||||
self.toolhead.move([x, y, z + x*self.x_adjust + y*self.y_adjust
|
||||
+ self.z_adjust, e], speed)
|
||||
x, y, z = newpos[:3]
|
||||
z += x*self.x_adjust + y*self.y_adjust + self.z_adjust
|
||||
self.toolhead.move([x, y, z] + newpos[3:], speed)
|
||||
def update_adjust(self, x_adjust, y_adjust, z_adjust):
|
||||
self.x_adjust = x_adjust
|
||||
self.y_adjust = y_adjust
|
||||
|
||||
@@ -64,7 +64,11 @@ class BLTouchProbe:
|
||||
self.cmd_helper = probe.ProbeCommandHelper(
|
||||
config, self, self.mcu_endstop.query_endstop)
|
||||
self.probe_offsets = probe.ProbeOffsetsHelper(config)
|
||||
self.probe_session = probe.ProbeSessionHelper(config, self)
|
||||
self.param_helper = probe.ProbeParameterHelper(config)
|
||||
self.homing_helper = probe.HomingViaProbeHelper(config, self,
|
||||
self.param_helper)
|
||||
self.probe_session = probe.ProbeSessionHelper(
|
||||
config, self.param_helper, self.homing_helper.start_probe_session)
|
||||
# Register BLTOUCH_DEBUG command
|
||||
self.gcode = self.printer.lookup_object('gcode')
|
||||
self.gcode.register_command("BLTOUCH_DEBUG", self.cmd_BLTOUCH_DEBUG,
|
||||
@@ -75,7 +79,7 @@ class BLTouchProbe:
|
||||
self.printer.register_event_handler("klippy:connect",
|
||||
self.handle_connect)
|
||||
def get_probe_params(self, gcmd=None):
|
||||
return self.probe_session.get_probe_params(gcmd)
|
||||
return self.param_helper.get_probe_params(gcmd)
|
||||
def get_offsets(self):
|
||||
return self.probe_offsets.get_offsets()
|
||||
def get_status(self, eventtime):
|
||||
@@ -191,9 +195,6 @@ class BLTouchProbe:
|
||||
self.verify_raise_probe()
|
||||
self.sync_print_time()
|
||||
self.multi = 'OFF'
|
||||
def probing_move(self, pos, speed):
|
||||
phoming = self.printer.lookup_object('homing')
|
||||
return phoming.probing_move(self, pos, speed)
|
||||
def probe_prepare(self, hmove):
|
||||
if self.multi == 'OFF' or self.multi == 'FIRST':
|
||||
self.lower_probe()
|
||||
|
||||
@@ -284,7 +284,7 @@ class BME280:
|
||||
self.chip_type, self.i2c.i2c_address))
|
||||
|
||||
# Reset chip
|
||||
self.write_register('RESET', [RESET_CHIP_VALUE], wait=True)
|
||||
self.write_register('RESET', [RESET_CHIP_VALUE])
|
||||
self.reactor.pause(self.reactor.monotonic() + .5)
|
||||
|
||||
# Make sure non-volatile memory has been copied to registers
|
||||
@@ -394,7 +394,7 @@ class BME280:
|
||||
self.write_register('CTRL_HUM', self.os_hum)
|
||||
# Enter normal (periodic) mode
|
||||
meas = self.os_temp << 5 | self.os_pres << 2 | MODE_PERIODIC
|
||||
self.write_register('CTRL_MEAS', meas, wait=True)
|
||||
self.write_register('CTRL_MEAS', meas)
|
||||
|
||||
if self.chip_type == 'BME680':
|
||||
self.write_register('CONFIG', self.iir_filter << 2)
|
||||
@@ -528,7 +528,7 @@ class BME280:
|
||||
|
||||
# Enter forced mode
|
||||
meas = self.os_temp << 5 | self.os_pres << 2 | MODE
|
||||
self.write_register('CTRL_MEAS', meas, wait=True)
|
||||
self.write_register('CTRL_MEAS', meas)
|
||||
max_sample_time = self.max_sample_time
|
||||
if run_gas:
|
||||
max_sample_time += self.gas_heat_duration / 1000
|
||||
@@ -776,15 +776,12 @@ class BME280:
|
||||
params = self.i2c.i2c_read(regs, read_len)
|
||||
return bytearray(params['response'])
|
||||
|
||||
def write_register(self, reg_name, data, wait = False):
|
||||
def write_register(self, reg_name, data):
|
||||
if type(data) is not list:
|
||||
data = [data]
|
||||
reg = self.chip_registers[reg_name]
|
||||
data.insert(0, reg)
|
||||
if not wait:
|
||||
self.i2c.i2c_write(data)
|
||||
else:
|
||||
self.i2c.i2c_write_wait_ack(data)
|
||||
|
||||
def get_status(self, eventtime):
|
||||
data = {
|
||||
|
||||
@@ -43,6 +43,7 @@ class MCU_SPI:
|
||||
cs_active_high=False):
|
||||
self.mcu = mcu
|
||||
self.bus = bus
|
||||
self.speed = speed
|
||||
# Config SPI object (set all CS pins high before spi_set_bus commands)
|
||||
self.oid = mcu.create_oid()
|
||||
if pin is None:
|
||||
@@ -51,11 +52,17 @@ class MCU_SPI:
|
||||
mcu.add_config_cmd("config_spi oid=%d pin=%s cs_active_high=%d"
|
||||
% (self.oid, pin, cs_active_high))
|
||||
# Generate SPI bus config message
|
||||
self.config_fmt_ticks = None
|
||||
if sw_pins is not None:
|
||||
self.config_fmt = (
|
||||
"spi_set_software_bus oid=%d"
|
||||
" miso_pin=%s mosi_pin=%s sclk_pin=%s mode=%d rate=%d"
|
||||
% (self.oid, sw_pins[0], sw_pins[1], sw_pins[2], mode, speed))
|
||||
self.config_fmt_ticks = (
|
||||
"spi_set_sw_bus oid=%d"
|
||||
" miso_pin=%s mosi_pin=%s sclk_pin=%s mode=%d pulse_ticks=%%d"
|
||||
% (self.oid, sw_pins[0], sw_pins[1],
|
||||
sw_pins[2], mode))
|
||||
else:
|
||||
self.config_fmt = (
|
||||
"spi_set_bus oid=%d spi_bus=%%s mode=%d rate=%d"
|
||||
@@ -78,6 +85,12 @@ class MCU_SPI:
|
||||
if '%' in self.config_fmt:
|
||||
bus = resolve_bus_name(self.mcu, "spi_bus", self.bus)
|
||||
self.config_fmt = self.config_fmt % (bus,)
|
||||
if self.config_fmt_ticks:
|
||||
if self.mcu.try_lookup_command("spi_set_sw_bus oid=%c miso_pin=%u "
|
||||
"mosi_pin=%u sclk_pin=%u "
|
||||
"mode=%u pulse_ticks=%u"):
|
||||
pulse_ticks = self.mcu.seconds_to_clock(1./self.speed)
|
||||
self.config_fmt = self.config_fmt_ticks % (pulse_ticks,)
|
||||
self.mcu.add_config_cmd(self.config_fmt)
|
||||
self.spi_send_cmd = self.mcu.lookup_command(
|
||||
"spi_send oid=%c data=%*s", cq=self.cmd_queue)
|
||||
@@ -147,6 +160,8 @@ class MCU_I2C:
|
||||
self.bus = bus
|
||||
self.i2c_address = addr
|
||||
self.oid = self.mcu.create_oid()
|
||||
self.speed = speed
|
||||
self.config_fmt_ticks = None
|
||||
mcu.add_config_cmd("config_i2c oid=%d" % (self.oid,))
|
||||
# Generate I2C bus config message
|
||||
if sw_pins is not None:
|
||||
@@ -154,6 +169,10 @@ class MCU_I2C:
|
||||
"i2c_set_software_bus oid=%d"
|
||||
" scl_pin=%s sda_pin=%s rate=%d address=%d"
|
||||
% (self.oid, sw_pins[0], sw_pins[1], speed, addr))
|
||||
self.config_fmt_ticks = (
|
||||
"i2c_set_sw_bus oid=%d"
|
||||
" scl_pin=%s sda_pin=%s pulse_ticks=%%d address=%d"
|
||||
% (self.oid, sw_pins[0], sw_pins[1], addr))
|
||||
else:
|
||||
self.config_fmt = (
|
||||
"i2c_set_bus oid=%d i2c_bus=%%s rate=%d address=%d"
|
||||
@@ -161,6 +180,13 @@ class MCU_I2C:
|
||||
self.cmd_queue = self.mcu.alloc_command_queue()
|
||||
self.mcu.register_config_callback(self.build_config)
|
||||
self.i2c_write_cmd = self.i2c_read_cmd = None
|
||||
printer = self.mcu.get_printer()
|
||||
printer.register_event_handler("klippy:connect", self._handle_connect)
|
||||
# backward support i2c_write inside the init section
|
||||
self._to_write = []
|
||||
def _handle_connect(self):
|
||||
for data in self._to_write:
|
||||
self.i2c_write(data)
|
||||
def get_oid(self):
|
||||
return self.oid
|
||||
def get_mcu(self):
|
||||
@@ -173,6 +199,12 @@ class MCU_I2C:
|
||||
if '%' in self.config_fmt:
|
||||
bus = resolve_bus_name(self.mcu, "i2c_bus", self.bus)
|
||||
self.config_fmt = self.config_fmt % (bus,)
|
||||
if self.config_fmt_ticks:
|
||||
if self.mcu.try_lookup_command("i2c_set_sw_bus oid=%c"
|
||||
" scl_pin=%u sda_pin=%u"
|
||||
" pulse_ticks=%u address=%u"):
|
||||
pulse_ticks = self.mcu.seconds_to_clock(1./self.speed/2)
|
||||
self.config_fmt = self.config_fmt_ticks % (pulse_ticks,)
|
||||
self.mcu.add_config_cmd(self.config_fmt)
|
||||
self.i2c_write_cmd = self.mcu.lookup_command(
|
||||
"i2c_write oid=%c data=%*s", cq=self.cmd_queue)
|
||||
@@ -182,18 +214,12 @@ class MCU_I2C:
|
||||
cq=self.cmd_queue)
|
||||
def i2c_write(self, data, minclock=0, reqclock=0):
|
||||
if self.i2c_write_cmd is None:
|
||||
# Send setup message via mcu initialization
|
||||
data_msg = "".join(["%02x" % (x,) for x in data])
|
||||
self.mcu.add_config_cmd("i2c_write oid=%d data=%s" % (
|
||||
self.oid, data_msg), is_init=True)
|
||||
self._to_write.append(data)
|
||||
return
|
||||
self.i2c_write_cmd.send([self.oid, data],
|
||||
minclock=minclock, reqclock=reqclock)
|
||||
def i2c_write_wait_ack(self, data, minclock=0, reqclock=0):
|
||||
self.i2c_write_cmd.send_wait_ack([self.oid, data],
|
||||
minclock=minclock, reqclock=reqclock)
|
||||
def i2c_read(self, write, read_len):
|
||||
return self.i2c_read_cmd.send([self.oid, write, read_len])
|
||||
def i2c_read(self, write, read_len, retry=True):
|
||||
return self.i2c_read_cmd.send([self.oid, write, read_len], retry)
|
||||
|
||||
def MCU_I2C_from_config(config, default_addr=None, default_speed=100000):
|
||||
# Load bus parameters
|
||||
|
||||
@@ -244,6 +244,33 @@ class HalfStepRotaryEncoder(BaseRotaryEncoder):
|
||||
BaseRotaryEncoder.R_START | BaseRotaryEncoder.R_DIR_CCW),
|
||||
)
|
||||
|
||||
class DebounceButton:
|
||||
def __init__(self, config, button_action):
|
||||
self.printer = config.get_printer()
|
||||
self.reactor = self.printer.get_reactor()
|
||||
self.button_action = button_action
|
||||
self.debounce_delay = config.getfloat('debounce_delay', 0., minval=0.)
|
||||
self.logical_state = None
|
||||
self.physical_state = None
|
||||
self.latest_eventtime = None
|
||||
def button_handler(self, eventtime, state):
|
||||
self.physical_state = state
|
||||
self.latest_eventtime = eventtime
|
||||
# if there would be no state transition, ignore the event:
|
||||
if self.logical_state == self.physical_state:
|
||||
return
|
||||
trigger_time = eventtime + self.debounce_delay
|
||||
self.reactor.register_callback(self._debounce_event, trigger_time)
|
||||
def _debounce_event(self, eventtime):
|
||||
# if there would be no state transition, ignore the event:
|
||||
if self.logical_state == self.physical_state:
|
||||
return
|
||||
# if there were more recent events, they supersede this one:
|
||||
if (eventtime - self.debounce_delay) < self.latest_eventtime:
|
||||
return
|
||||
# enact state transition and trigger action
|
||||
self.logical_state = self.physical_state
|
||||
self.button_action(self.latest_eventtime, self.logical_state)
|
||||
|
||||
######################################################################
|
||||
# Button registration code
|
||||
@@ -261,6 +288,14 @@ class PrinterButtons:
|
||||
self.adc_buttons[pin] = adc_buttons = MCU_ADC_buttons(
|
||||
self.printer, pin, pullup)
|
||||
adc_buttons.setup_button(min_val, max_val, callback)
|
||||
def register_debounce_button(self, pin, callback, config):
|
||||
debounce = DebounceButton(config, callback)
|
||||
return self.register_buttons([pin], debounce.button_handler)
|
||||
def register_debounce_adc_button(self, pin, min_val, max_val, pullup
|
||||
, callback, config):
|
||||
debounce = DebounceButton(config, callback)
|
||||
return self.register_adc_button(pin, min_val, max_val, pullup
|
||||
, debounce.button_handler)
|
||||
def register_adc_button_push(self, pin, min_val, max_val, pullup, callback):
|
||||
def helper(eventtime, state, callback=callback):
|
||||
if state:
|
||||
|
||||
80
klippy/extras/canbus_stats.py
Normal file
80
klippy/extras/canbus_stats.py
Normal file
@@ -0,0 +1,80 @@
|
||||
# Report canbus connection status
|
||||
#
|
||||
# Copyright (C) 2025 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import logging
|
||||
|
||||
class PrinterCANBusStats:
|
||||
def __init__(self, config):
|
||||
self.printer = config.get_printer()
|
||||
self.reactor = self.printer.get_reactor()
|
||||
self.name = config.get_name().split()[-1]
|
||||
self.mcu = None
|
||||
self.get_canbus_status_cmd = None
|
||||
self.status = {'rx_error': None, 'tx_error': None, 'tx_retries': None,
|
||||
'bus_state': None}
|
||||
self.printer.register_event_handler("klippy:connect",
|
||||
self.handle_connect)
|
||||
self.printer.register_event_handler("klippy:shutdown",
|
||||
self.handle_shutdown)
|
||||
def handle_shutdown(self):
|
||||
status = self.status.copy()
|
||||
if status['bus_state'] is not None:
|
||||
# Clear bus_state on shutdown to note that the values may be stale
|
||||
status['bus_state'] = 'unknown'
|
||||
self.status = status
|
||||
def handle_connect(self):
|
||||
# Lookup mcu
|
||||
mcu_name = self.name
|
||||
if mcu_name != 'mcu':
|
||||
mcu_name = 'mcu ' + mcu_name
|
||||
self.mcu = self.printer.lookup_object(mcu_name)
|
||||
# Lookup status query command
|
||||
if self.mcu.try_lookup_command("get_canbus_status") is None:
|
||||
return
|
||||
self.get_canbus_status_cmd = self.mcu.lookup_query_command(
|
||||
"get_canbus_status",
|
||||
"canbus_status rx_error=%u tx_error=%u tx_retries=%u"
|
||||
" canbus_bus_state=%u")
|
||||
# Register usb_canbus_state message handling (for usb to canbus bridge)
|
||||
self.mcu.register_response(self.handle_usb_canbus_state,
|
||||
"usb_canbus_state")
|
||||
# Register periodic query timer
|
||||
self.reactor.register_timer(self.query_event, self.reactor.NOW)
|
||||
def handle_usb_canbus_state(self, params):
|
||||
discard = params['discard']
|
||||
if discard:
|
||||
logging.warning("USB CANBUS bridge '%s' is discarding!"
|
||||
% (self.name,))
|
||||
else:
|
||||
logging.warning("USB CANBUS bridge '%s' is no longer discarding."
|
||||
% (self.name,))
|
||||
def query_event(self, eventtime):
|
||||
prev_rx = self.status['rx_error']
|
||||
prev_tx = self.status['tx_error']
|
||||
prev_retries = self.status['tx_retries']
|
||||
if prev_rx is None:
|
||||
prev_rx = prev_tx = prev_retries = 0
|
||||
params = self.get_canbus_status_cmd.send()
|
||||
rx = prev_rx + ((params['rx_error'] - prev_rx) & 0xffffffff)
|
||||
tx = prev_tx + ((params['tx_error'] - prev_tx) & 0xffffffff)
|
||||
retries = prev_retries + ((params['tx_retries'] - prev_retries)
|
||||
& 0xffffffff)
|
||||
state = params['canbus_bus_state']
|
||||
self.status = {'rx_error': rx, 'tx_error': tx, 'tx_retries': retries,
|
||||
'bus_state': state}
|
||||
return self.reactor.monotonic() + 1.
|
||||
def stats(self, eventtime):
|
||||
status = self.status
|
||||
if status['rx_error'] is None:
|
||||
return (False, '')
|
||||
return (False, 'canstat_%s: bus_state=%s rx_error=%d'
|
||||
' tx_error=%d tx_retries=%d'
|
||||
% (self.name, status['bus_state'], status['rx_error'],
|
||||
status['tx_error'], status['tx_retries']))
|
||||
def get_status(self, eventtime):
|
||||
return self.status
|
||||
|
||||
def load_config_prefix(config):
|
||||
return PrinterCANBusStats(config)
|
||||
@@ -12,7 +12,7 @@ def load_config_prefix(config):
|
||||
if not config.has_section('display'):
|
||||
raise config.error(
|
||||
"A primary [display] section must be defined in printer.cfg "
|
||||
"to use auxilary displays")
|
||||
"to use auxiliary displays")
|
||||
name = config.get_name().split()[-1]
|
||||
if name == "display":
|
||||
raise config.error(
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# ftp://ftp.simtel.net/pub/simtelnet/msdos/screen/fntcol16.zip
|
||||
# (c) Joseph Gil
|
||||
#
|
||||
# Indivdual fonts are public domain
|
||||
# Individual fonts are public domain
|
||||
######################################################################
|
||||
|
||||
VGA_FONT = [
|
||||
|
||||
@@ -52,7 +52,7 @@ class PhaseCalc:
|
||||
class EndstopPhase:
|
||||
def __init__(self, config):
|
||||
self.printer = config.get_printer()
|
||||
self.name = config.get_name().split()[1]
|
||||
self.name = " ".join(config.get_name().split()[1:])
|
||||
# Obtain step_distance and microsteps from stepper config section
|
||||
sconfig = config.getsection(self.name)
|
||||
rotation_dist, steps_per_rotation = stepper.parse_step_distance(sconfig)
|
||||
@@ -118,7 +118,7 @@ class EndstopPhase:
|
||||
return delta * self.step_dist
|
||||
def handle_home_rails_end(self, homing_state, rails):
|
||||
for rail in rails:
|
||||
stepper = rail.get_steppers()[0]
|
||||
stepper = rail.get_endstops()[0][0].get_steppers()[0]
|
||||
if stepper.get_name() == self.name:
|
||||
trig_mcu_pos = homing_state.get_trigger_position(self.name)
|
||||
align = self.align_endstop(rail)
|
||||
|
||||
@@ -82,24 +82,25 @@ class ExcludeObject:
|
||||
self._reset_state()
|
||||
self._unregister_transform()
|
||||
|
||||
def _get_extrusion_offsets(self):
|
||||
offset = self.extrusion_offsets.get(
|
||||
self.toolhead.get_extruder().get_name())
|
||||
def _get_extrusion_offsets(self, num_coord):
|
||||
ename = self.toolhead.get_extruder().get_name()
|
||||
offset = self.extrusion_offsets.get(ename)
|
||||
if offset is None:
|
||||
offset = [0., 0., 0., 0.]
|
||||
self.extrusion_offsets[self.toolhead.get_extruder().get_name()] = \
|
||||
offset
|
||||
offset = [0.] * num_coord
|
||||
self.extrusion_offsets[ename] = offset
|
||||
if len(offset) < num_coord:
|
||||
offset.extend([0.] * (len(num_coord) - len(offset)))
|
||||
return offset
|
||||
|
||||
def get_position(self):
|
||||
offset = self._get_extrusion_offsets()
|
||||
pos = self.next_transform.get_position()
|
||||
for i in range(4):
|
||||
offset = self._get_extrusion_offsets(len(pos))
|
||||
for i in range(len(pos)):
|
||||
self.last_position[i] = pos[i] + offset[i]
|
||||
return list(self.last_position)
|
||||
|
||||
def _normal_move(self, newpos, speed):
|
||||
offset = self._get_extrusion_offsets()
|
||||
offset = self._get_extrusion_offsets(len(newpos))
|
||||
|
||||
if self.initial_extrusion_moves > 0 and \
|
||||
self.last_position[3] != newpos[3]:
|
||||
@@ -122,9 +123,9 @@ class ExcludeObject:
|
||||
if (offset[0] != 0 or offset[1] != 0) and \
|
||||
(newpos[0] != self.last_position_excluded[0] or \
|
||||
newpos[1] != self.last_position_excluded[1]):
|
||||
offset[0] = 0
|
||||
offset[1] = 0
|
||||
offset[2] = 0
|
||||
for i in range(len(newpos)):
|
||||
if i != 3:
|
||||
offset[i] = 0
|
||||
offset[3] += self.extruder_adj
|
||||
self.extruder_adj = 0
|
||||
|
||||
@@ -137,17 +138,18 @@ class ExcludeObject:
|
||||
self.extruder_adj = 0
|
||||
|
||||
tx_pos = newpos[:]
|
||||
for i in range(4):
|
||||
for i in range(len(newpos)):
|
||||
tx_pos[i] = newpos[i] - offset[i]
|
||||
self.next_transform.move(tx_pos, speed)
|
||||
|
||||
def _ignore_move(self, newpos, speed):
|
||||
offset = self._get_extrusion_offsets()
|
||||
for i in range(3):
|
||||
offset = self._get_extrusion_offsets(len(newpos))
|
||||
for i in range(len(newpos)):
|
||||
if i != 3:
|
||||
offset[i] = newpos[i] - self.last_position_extruded[i]
|
||||
offset[3] = offset[3] + newpos[3] - self.last_position[3]
|
||||
self.last_position[:] = newpos
|
||||
self.last_position_excluded[:] =self.last_position
|
||||
self.last_position_excluded[:] = self.last_position
|
||||
self.max_position_excluded = max(self.max_position_excluded, newpos[3])
|
||||
|
||||
def _move_into_excluded_region(self, newpos, speed):
|
||||
|
||||
@@ -29,6 +29,7 @@ class PrinterFanGeneric:
|
||||
value = float(text)
|
||||
except ValueError as e:
|
||||
logging.exception("fan_generic template render error")
|
||||
value = 0.
|
||||
self.fan.set_speed(value)
|
||||
def cmd_SET_FAN_SPEED(self, gcmd):
|
||||
speed = gcmd.get_float('SPEED', None, 0.)
|
||||
|
||||
@@ -63,7 +63,7 @@ class EncoderSensor:
|
||||
def _extruder_pos_update_event(self, eventtime):
|
||||
extruder_pos = self._get_extruder_pos(eventtime)
|
||||
# Check for filament runout
|
||||
self.runout_helper.note_filament_present(
|
||||
self.runout_helper.note_filament_present(eventtime,
|
||||
extruder_pos < self.filament_runout_pos)
|
||||
return eventtime + CHECK_RUNOUT_TIMEOUT
|
||||
def encoder_event(self, eventtime, state):
|
||||
@@ -71,7 +71,7 @@ class EncoderSensor:
|
||||
self._update_filament_runout_pos(eventtime)
|
||||
# Check for filament insertion
|
||||
# Filament is always assumed to be present on an encoder event
|
||||
self.runout_helper.note_filament_present(True)
|
||||
self.runout_helper.note_filament_present(eventtime, True)
|
||||
|
||||
def load_config_prefix(config):
|
||||
return EncoderSensor(config)
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import logging
|
||||
|
||||
|
||||
class RunoutHelper:
|
||||
def __init__(self, config):
|
||||
self.name = config.get_name().split()[-1]
|
||||
@@ -24,7 +25,7 @@ class RunoutHelper:
|
||||
self.insert_gcode = gcode_macro.load_template(
|
||||
config, 'insert_gcode')
|
||||
self.pause_delay = config.getfloat('pause_delay', .5, above=.0)
|
||||
self.event_delay = config.getfloat('event_delay', 3., above=0.)
|
||||
self.event_delay = config.getfloat('event_delay', 3., minval=.0)
|
||||
# Internal state
|
||||
self.min_event_systime = self.reactor.NEVER
|
||||
self.filament_present = False
|
||||
@@ -59,19 +60,20 @@ class RunoutHelper:
|
||||
except Exception:
|
||||
logging.exception("Script running error")
|
||||
self.min_event_systime = self.reactor.monotonic() + self.event_delay
|
||||
def note_filament_present(self, is_filament_present):
|
||||
def note_filament_present(self, eventtime, is_filament_present):
|
||||
if is_filament_present == self.filament_present:
|
||||
return
|
||||
self.filament_present = is_filament_present
|
||||
eventtime = self.reactor.monotonic()
|
||||
|
||||
if eventtime < self.min_event_systime or not self.sensor_enabled:
|
||||
# do not process during the initialization time, duplicates,
|
||||
# during the event delay time, while an event is running, or
|
||||
# when the sensor is disabled
|
||||
return
|
||||
# Determine "printing" status
|
||||
now = self.reactor.monotonic()
|
||||
idle_timeout = self.printer.lookup_object("idle_timeout")
|
||||
is_printing = idle_timeout.get_status(eventtime)["state"] == "Printing"
|
||||
is_printing = idle_timeout.get_status(now)["state"] == "Printing"
|
||||
# Perform filament action associated with status change (if any)
|
||||
if is_filament_present:
|
||||
if not is_printing and self.insert_gcode is not None:
|
||||
@@ -79,14 +81,14 @@ class RunoutHelper:
|
||||
self.min_event_systime = self.reactor.NEVER
|
||||
logging.info(
|
||||
"Filament Sensor %s: insert event detected, Time %.2f" %
|
||||
(self.name, eventtime))
|
||||
(self.name, now))
|
||||
self.reactor.register_callback(self._insert_event_handler)
|
||||
elif is_printing and self.runout_gcode is not None:
|
||||
# runout detected
|
||||
self.min_event_systime = self.reactor.NEVER
|
||||
logging.info(
|
||||
"Filament Sensor %s: runout event detected, Time %.2f" %
|
||||
(self.name, eventtime))
|
||||
(self.name, now))
|
||||
self.reactor.register_callback(self._runout_event_handler)
|
||||
def get_status(self, eventtime):
|
||||
return {
|
||||
@@ -108,11 +110,12 @@ class SwitchSensor:
|
||||
printer = config.get_printer()
|
||||
buttons = printer.load_object(config, 'buttons')
|
||||
switch_pin = config.get('switch_pin')
|
||||
buttons.register_buttons([switch_pin], self._button_handler)
|
||||
buttons.register_debounce_button(switch_pin, self._button_handler
|
||||
, config)
|
||||
self.runout_helper = RunoutHelper(config)
|
||||
self.get_status = self.runout_helper.get_status
|
||||
def _button_handler(self, eventtime, state):
|
||||
self.runout_helper.note_filament_present(state)
|
||||
self.runout_helper.note_filament_present(eventtime, state)
|
||||
|
||||
def load_config_prefix(config):
|
||||
return SwitchSensor(config)
|
||||
|
||||
@@ -43,7 +43,7 @@ class FirmwareRetraction:
|
||||
self.unretract_length = (self.retract_length
|
||||
+ self.unretract_extra_length)
|
||||
self.is_retracted = False
|
||||
cmd_GET_RETRACTION_help = ("Report firmware retraction paramters")
|
||||
cmd_GET_RETRACTION_help = ("Report firmware retraction parameters")
|
||||
def cmd_GET_RETRACTION(self, gcmd):
|
||||
gcmd.respond_info("RETRACT_LENGTH=%.5f RETRACT_SPEED=%.5f"
|
||||
" UNRETRACT_EXTRA_LENGTH=%.5f UNRETRACT_SPEED=%.5f"
|
||||
|
||||
@@ -33,10 +33,10 @@ class ForceMove:
|
||||
self.printer = config.get_printer()
|
||||
self.steppers = {}
|
||||
# Setup iterative solver
|
||||
self.motion_queuing = self.printer.load_object(config, 'motion_queuing')
|
||||
self.trapq = self.motion_queuing.allocate_trapq()
|
||||
self.trapq_append = self.motion_queuing.lookup_trapq_append()
|
||||
ffi_main, ffi_lib = chelper.get_ffi()
|
||||
self.trapq = ffi_main.gc(ffi_lib.trapq_alloc(), ffi_lib.trapq_free)
|
||||
self.trapq_append = ffi_lib.trapq_append
|
||||
self.trapq_finalize_moves = ffi_lib.trapq_finalize_moves
|
||||
self.stepper_kinematics = ffi_main.gc(
|
||||
ffi_lib.cartesian_stepper_alloc(b'x'), ffi_lib.free)
|
||||
# Register commands
|
||||
@@ -85,14 +85,12 @@ class ForceMove:
|
||||
self.trapq_append(self.trapq, print_time, accel_t, cruise_t, accel_t,
|
||||
0., 0., 0., axis_r, 0., 0., 0., cruise_v, accel)
|
||||
print_time = print_time + accel_t + cruise_t + accel_t
|
||||
stepper.generate_steps(print_time)
|
||||
self.trapq_finalize_moves(self.trapq, print_time + 99999.9,
|
||||
print_time + 99999.9)
|
||||
stepper.set_trapq(prev_trapq)
|
||||
stepper.set_stepper_kinematics(prev_sk)
|
||||
toolhead.note_mcu_movequeue_activity(print_time)
|
||||
toolhead.dwell(accel_t + cruise_t + accel_t)
|
||||
toolhead.flush_step_generation()
|
||||
stepper.set_trapq(prev_trapq)
|
||||
stepper.set_stepper_kinematics(prev_sk)
|
||||
self.motion_queuing.wipe_trapq(self.trapq)
|
||||
def _lookup_stepper(self, gcmd):
|
||||
name = gcmd.get('STEPPER')
|
||||
if name not in self.steppers:
|
||||
@@ -131,12 +129,19 @@ class ForceMove:
|
||||
x = gcmd.get_float('X', curpos[0])
|
||||
y = gcmd.get_float('Y', curpos[1])
|
||||
z = gcmd.get_float('Z', curpos[2])
|
||||
clear = gcmd.get('CLEAR', '').lower()
|
||||
clear_axes = "".join([a for a in "xyz" if a in clear])
|
||||
logging.info("SET_KINEMATIC_POSITION pos=%.3f,%.3f,%.3f clear=%s",
|
||||
x, y, z, clear_axes)
|
||||
toolhead.set_position([x, y, z, curpos[3]], homing_axes="xyz")
|
||||
toolhead.get_kinematics().clear_homing_state(clear_axes)
|
||||
set_homed = gcmd.get('SET_HOMED', 'xyz').lower()
|
||||
set_homed_axes = "".join([a for a in "xyz" if a in set_homed])
|
||||
if gcmd.get('CLEAR_HOMED', None) is None:
|
||||
# "CLEAR" is an alias for "CLEAR_HOMED"; should deprecate
|
||||
clear_homed = gcmd.get('CLEAR', '').lower()
|
||||
else:
|
||||
clear_homed = gcmd.get('CLEAR_HOMED', '').lower()
|
||||
clear_homed_axes = "".join([a for a in "xyz" if a in clear_homed])
|
||||
logging.info("SET_KINEMATIC_POSITION pos=%.3f,%.3f,%.3f"
|
||||
" set_homed=%s clear_homed=%s",
|
||||
x, y, z, set_homed_axes, clear_homed_axes)
|
||||
toolhead.set_position([x, y, z], homing_axes=set_homed_axes)
|
||||
toolhead.get_kinematics().clear_homing_state(clear_homed_axes)
|
||||
|
||||
def load_config(config):
|
||||
return ForceMove(config)
|
||||
|
||||
31
klippy/extras/garbage_collection.py
Normal file
31
klippy/extras/garbage_collection.py
Normal file
@@ -0,0 +1,31 @@
|
||||
# Garbage collection optimizations
|
||||
#
|
||||
# Copyright (C) 2025 Branden Cash <ammmze@gmail.com>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import gc
|
||||
import logging
|
||||
|
||||
class GarbageCollection:
|
||||
def __init__(self, config):
|
||||
self.printer = config.get_printer()
|
||||
# feature check ... freeze/unfreeze is only available in python 3.7+
|
||||
can_freeze = hasattr(gc, 'freeze') and hasattr(gc, 'unfreeze')
|
||||
if can_freeze:
|
||||
self.printer.register_event_handler("klippy:ready",
|
||||
self._handle_ready)
|
||||
self.printer.register_event_handler("klippy:disconnect",
|
||||
self._handle_disconnect)
|
||||
|
||||
def _handle_ready(self):
|
||||
logging.debug("Running full garbage collection and freezing")
|
||||
for n in range(3):
|
||||
gc.collect(n)
|
||||
gc.freeze()
|
||||
|
||||
def _handle_disconnect(self):
|
||||
logging.debug("Unfreezing garbage collection")
|
||||
gc.unfreeze()
|
||||
|
||||
def load_config(config):
|
||||
return GarbageCollection(config)
|
||||
@@ -5,6 +5,7 @@
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import logging
|
||||
|
||||
|
||||
class GCodeButton:
|
||||
def __init__(self, config):
|
||||
self.printer = config.get_printer()
|
||||
@@ -13,12 +14,13 @@ class GCodeButton:
|
||||
self.last_state = 0
|
||||
buttons = self.printer.load_object(config, "buttons")
|
||||
if config.get('analog_range', None) is None:
|
||||
buttons.register_buttons([self.pin], self.button_callback)
|
||||
buttons.register_debounce_button(self.pin, self.button_callback
|
||||
, config)
|
||||
else:
|
||||
amin, amax = config.getfloatlist('analog_range', count=2)
|
||||
pullup = config.getfloat('analog_pullup_resistor', 4700., above=0.)
|
||||
buttons.register_adc_button(self.pin, amin, amax, pullup,
|
||||
self.button_callback)
|
||||
buttons.register_debounce_adc_button(self.pin, amin, amax, pullup,
|
||||
self.button_callback, config)
|
||||
gcode_macro = self.printer.load_object(config, 'gcode_macro')
|
||||
self.press_template = gcode_macro.load_template(config, 'press_gcode')
|
||||
self.release_template = gcode_macro.load_template(config,
|
||||
|
||||
@@ -49,6 +49,12 @@ class TemplateWrapper:
|
||||
self.create_template_context = gcode_macro.create_template_context
|
||||
try:
|
||||
self.template = env.from_string(script)
|
||||
except jinja2.exceptions.TemplateSyntaxError as e:
|
||||
lines = script.splitlines()
|
||||
msg = "Error loading template '%s'\nline %s: %s # %s" % (
|
||||
name, e.lineno, lines[e.lineno-1], e.message)
|
||||
logging.exception(msg)
|
||||
raise self.gcode.error(msg)
|
||||
except Exception as e:
|
||||
msg = "Error loading template '%s': %s" % (
|
||||
name, traceback.format_exception_only(type(e), e)[-1])
|
||||
@@ -172,8 +178,8 @@ class GCodeMacro:
|
||||
literal = ast.literal_eval(value)
|
||||
json.dumps(literal, separators=(',', ':'))
|
||||
except (SyntaxError, TypeError, ValueError) as e:
|
||||
raise gcmd.error("Unable to parse '%s' as a literal: %s" %
|
||||
(value, e))
|
||||
raise gcmd.error("Unable to parse '%s' as a literal: %s in '%s'" %
|
||||
(value, e, gcmd.get_commandline()))
|
||||
v = dict(self.variables)
|
||||
v[variable] = literal
|
||||
self.variables = v
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# G-Code G1 movement commands (and associated coordinate manipulation)
|
||||
#
|
||||
# Copyright (C) 2016-2021 Kevin O'Connor <kevin@koconnor.net>
|
||||
# Copyright (C) 2016-2025 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import logging
|
||||
@@ -14,6 +14,8 @@ class GCodeMove:
|
||||
self.reset_last_position)
|
||||
printer.register_event_handler("toolhead:manual_move",
|
||||
self.reset_last_position)
|
||||
printer.register_event_handler("toolhead:update_extra_axes",
|
||||
self._update_extra_axes)
|
||||
printer.register_event_handler("gcode:command_error",
|
||||
self.reset_last_position)
|
||||
printer.register_event_handler("extruder:activate_extruder",
|
||||
@@ -42,6 +44,7 @@ class GCodeMove:
|
||||
self.base_position = [0.0, 0.0, 0.0, 0.0]
|
||||
self.last_position = [0.0, 0.0, 0.0, 0.0]
|
||||
self.homing_position = [0.0, 0.0, 0.0, 0.0]
|
||||
self.axis_map = {'X':0, 'Y': 1, 'Z': 2, 'E': 3}
|
||||
self.speed = 25.
|
||||
self.speed_factor = 1. / 60.
|
||||
self.extrude_factor = 1.
|
||||
@@ -102,35 +105,46 @@ class GCodeMove:
|
||||
'extrude_factor': self.extrude_factor,
|
||||
'absolute_coordinates': self.absolute_coord,
|
||||
'absolute_extrude': self.absolute_extrude,
|
||||
'homing_origin': self.Coord(*self.homing_position),
|
||||
'position': self.Coord(*self.last_position),
|
||||
'gcode_position': self.Coord(*move_position),
|
||||
'homing_origin': self.Coord(*self.homing_position[:4]),
|
||||
'position': self.Coord(*self.last_position[:4]),
|
||||
'gcode_position': self.Coord(*move_position[:4]),
|
||||
}
|
||||
def reset_last_position(self):
|
||||
if self.is_printer_ready:
|
||||
self.last_position = self.position_with_transform()
|
||||
def _update_extra_axes(self):
|
||||
toolhead = self.printer.lookup_object('toolhead')
|
||||
axis_map = {'X':0, 'Y': 1, 'Z': 2, 'E': 3}
|
||||
extra_axes = toolhead.get_extra_axes()
|
||||
for index, ea in enumerate(extra_axes):
|
||||
if ea is None:
|
||||
continue
|
||||
gcode_id = ea.get_axis_gcode_id()
|
||||
if gcode_id is None or gcode_id in axis_map or gcode_id in "FN":
|
||||
continue
|
||||
axis_map[gcode_id] = index
|
||||
self.axis_map = axis_map
|
||||
self.base_position[4:] = [0.] * (len(extra_axes) - 4)
|
||||
self.reset_last_position()
|
||||
# G-Code movement commands
|
||||
def cmd_G1(self, gcmd):
|
||||
# Move
|
||||
params = gcmd.get_command_parameters()
|
||||
try:
|
||||
for pos, axis in enumerate('XYZ'):
|
||||
for axis, pos in self.axis_map.items():
|
||||
if axis in params:
|
||||
v = float(params[axis])
|
||||
if not self.absolute_coord:
|
||||
absolute_coord = self.absolute_coord
|
||||
if axis == 'E':
|
||||
v *= self.extrude_factor
|
||||
if not self.absolute_extrude:
|
||||
absolute_coord = False
|
||||
if not absolute_coord:
|
||||
# value relative to position of last move
|
||||
self.last_position[pos] += v
|
||||
else:
|
||||
# value relative to base coordinate position
|
||||
self.last_position[pos] = v + self.base_position[pos]
|
||||
if 'E' in params:
|
||||
v = float(params['E']) * self.extrude_factor
|
||||
if not self.absolute_coord or not self.absolute_extrude:
|
||||
# value relative to position of last move
|
||||
self.last_position[3] += v
|
||||
else:
|
||||
# value relative to base coordinate position
|
||||
self.last_position[3] = v + self.base_position[3]
|
||||
if 'F' in params:
|
||||
gcode_speed = float(params['F'])
|
||||
if gcode_speed <= 0.:
|
||||
@@ -169,7 +183,7 @@ class GCodeMove:
|
||||
offset *= self.extrude_factor
|
||||
self.base_position[i] = self.last_position[i] - offset
|
||||
if offsets == [None, None, None, None]:
|
||||
self.base_position = list(self.last_position)
|
||||
self.base_position[:4] = self.last_position[:4]
|
||||
def cmd_M114(self, gcmd):
|
||||
# Get Current Position
|
||||
p = self._get_gcode_position()
|
||||
@@ -227,7 +241,7 @@ class GCodeMove:
|
||||
# Restore state
|
||||
self.absolute_coord = state['absolute_coord']
|
||||
self.absolute_extrude = state['absolute_extrude']
|
||||
self.base_position = list(state['base_position'])
|
||||
self.base_position[:4] = state['base_position'][:4]
|
||||
self.homing_position = list(state['homing_position'])
|
||||
self.speed = state['speed']
|
||||
self.speed_factor = state['speed_factor']
|
||||
@@ -255,7 +269,7 @@ class GCodeMove:
|
||||
kinfo = zip("XYZ", kin.calc_position(dict(cinfo)))
|
||||
kin_pos = " ".join(["%s:%.6f" % (a, v) for a, v in kinfo])
|
||||
toolhead_pos = " ".join(["%s:%.6f" % (a, v) for a, v in zip(
|
||||
"XYZE", toolhead.get_position())])
|
||||
"XYZE", toolhead.get_position()[:4])])
|
||||
gcode_pos = " ".join(["%s:%.6f" % (a, v)
|
||||
for a, v in zip("XYZE", self.last_position)])
|
||||
base_pos = " ".join(["%s:%.6f" % (a, v)
|
||||
|
||||
@@ -125,7 +125,7 @@ class HallFilamentWidthSensor:
|
||||
# Update filament array for lastFilamentWidthReading
|
||||
self.update_filament_array(last_epos)
|
||||
# Check runout
|
||||
self.runout_helper.note_filament_present(
|
||||
self.runout_helper.note_filament_present(eventtime,
|
||||
self.runout_dia_min <= self.diameter <= self.runout_dia_max)
|
||||
# Does filament exists
|
||||
if self.diameter > 0.5:
|
||||
@@ -209,10 +209,12 @@ class HallFilamentWidthSensor:
|
||||
+self.lastFilamentWidthReading2))
|
||||
gcmd.respond_info(response)
|
||||
def get_status(self, eventtime):
|
||||
return {'Diameter': self.diameter,
|
||||
status = self.runout_helper.get_status(eventtime)
|
||||
status.update({'Diameter': self.diameter,
|
||||
'Raw':(self.lastFilamentWidthReading+
|
||||
self.lastFilamentWidthReading2),
|
||||
'is_active':self.is_active}
|
||||
'is_active':self.is_active})
|
||||
return status
|
||||
def cmd_log_enable(self, gcmd):
|
||||
self.is_log = True
|
||||
gcmd.respond_info("Filament width logging Turned On")
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Tracking of PWM controlled heaters and their temperature control
|
||||
#
|
||||
# Copyright (C) 2016-2020 Kevin O'Connor <kevin@koconnor.net>
|
||||
# Copyright (C) 2016-2025 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import os, logging, threading
|
||||
@@ -11,10 +11,11 @@ import os, logging, threading
|
||||
######################################################################
|
||||
|
||||
KELVIN_TO_CELSIUS = -273.15
|
||||
MAX_HEAT_TIME = 5.0
|
||||
MAX_HEAT_TIME = 3.0
|
||||
AMBIENT_TEMP = 25.
|
||||
PID_PARAM_BASE = 255.
|
||||
MAX_MAINTHREAD_TIME = 5.0
|
||||
QUELL_STALE_TIME = 7.0
|
||||
|
||||
class Heater:
|
||||
def __init__(self, config, sensor):
|
||||
@@ -74,7 +75,8 @@ class Heater:
|
||||
# No significant change in value - can suppress update
|
||||
return
|
||||
pwm_time = read_time + self.pwm_delay
|
||||
self.next_pwm_time = pwm_time + 0.75 * MAX_HEAT_TIME
|
||||
self.next_pwm_time = (pwm_time + MAX_HEAT_TIME
|
||||
- (3. * self.pwm_delay + 0.001))
|
||||
self.last_pwm_value = value
|
||||
self.mcu_pwm.set_pwm(pwm_time, value)
|
||||
#logging.debug("%s: pwm=%.3f@%.3f (from %.3f@%.3f [%.3f])",
|
||||
@@ -110,9 +112,10 @@ class Heater:
|
||||
with self.lock:
|
||||
self.target_temp = degrees
|
||||
def get_temp(self, eventtime):
|
||||
print_time = self.mcu_pwm.get_mcu().estimated_print_time(eventtime) - 5.
|
||||
est_print_time = self.mcu_pwm.get_mcu().estimated_print_time(eventtime)
|
||||
quell_time = est_print_time - QUELL_STALE_TIME
|
||||
with self.lock:
|
||||
if self.last_temp_time < print_time:
|
||||
if self.last_temp_time < quell_time:
|
||||
return 0., self.target_temp
|
||||
return self.smoothed_temp, self.target_temp
|
||||
def check_busy(self, eventtime):
|
||||
|
||||
@@ -45,7 +45,7 @@ class StepperPosition:
|
||||
class HomingMove:
|
||||
def __init__(self, printer, endstops, toolhead=None):
|
||||
self.printer = printer
|
||||
self.endstops = endstops
|
||||
self.endstops = [es for es in endstops if es[0].get_steppers()]
|
||||
if toolhead is None:
|
||||
toolhead = printer.lookup_object('toolhead')
|
||||
self.toolhead = toolhead
|
||||
@@ -71,7 +71,9 @@ class HomingMove:
|
||||
sname = stepper.get_name()
|
||||
kin_spos[sname] += offsets.get(sname, 0) * stepper.get_step_dist()
|
||||
thpos = self.toolhead.get_position()
|
||||
return list(kin.calc_position(kin_spos))[:3] + thpos[3:]
|
||||
cpos = kin.calc_position(kin_spos)
|
||||
return [cp if cp is not None else tp
|
||||
for cp, tp in zip(cpos, thpos[:3])] + thpos[3:]
|
||||
def homing_move(self, movepos, speed, probe_pos=False,
|
||||
triggered=True, check_triggered=True):
|
||||
# Notify start of homing/probing move
|
||||
@@ -233,6 +235,10 @@ class Homing:
|
||||
for s in kin.get_steppers()}
|
||||
newpos = kin.calc_position(kin_spos)
|
||||
for axis in force_axes:
|
||||
if newpos[axis] is None:
|
||||
raise self.printer.command_error(
|
||||
"Cannot determine position of toolhead on "
|
||||
"axis %s after homing" % "xyz"[axis])
|
||||
homepos[axis] = newpos[axis]
|
||||
self.toolhead.set_position(homepos)
|
||||
|
||||
|
||||
@@ -15,7 +15,7 @@ from . import bus
|
||||
# Si7013 - Untested
|
||||
# Si7020 - Untested
|
||||
# Si7021 - Tested on Pico MCU
|
||||
# SHT21 - Untested
|
||||
# SHT21 - Tested on Linux MCU.
|
||||
#
|
||||
######################################################################
|
||||
|
||||
@@ -34,7 +34,7 @@ HTU21D_COMMANDS = {
|
||||
|
||||
}
|
||||
|
||||
HTU21D_RESOLUTION_MASK = 0x7E;
|
||||
HTU21D_RESOLUTION_MASK = 0x7E
|
||||
HTU21D_RESOLUTIONS = {
|
||||
'TEMP14_HUM12':int('00000000',2),
|
||||
'TEMP13_HUM10':int('10000000',2),
|
||||
@@ -42,31 +42,40 @@ HTU21D_RESOLUTIONS = {
|
||||
'TEMP11_HUM11':int('10000001',2)
|
||||
}
|
||||
|
||||
ID_MAP = {
|
||||
0x0D: 'SI7013',
|
||||
0x14: 'SI7020',
|
||||
0x15: 'SI7021',
|
||||
0x31: 'SHT21',
|
||||
0x01: 'SHT21',
|
||||
0x32: 'HTU21D',
|
||||
}
|
||||
|
||||
# Device with conversion time for tmp/resolution bit
|
||||
# The format is:
|
||||
# <CHIPNAME>:{id:<ID>, ..<RESOlUTION>:[<temp time>,<humidity time>].. }
|
||||
HTU21D_DEVICES = {
|
||||
'SI7013':{'id':0x0D,
|
||||
'SI7013':{
|
||||
'TEMP14_HUM12':[.11,.12],
|
||||
'TEMP13_HUM10':[ .7, .5],
|
||||
'TEMP12_HUM08':[ .4, .4],
|
||||
'TEMP11_HUM11':[ .3, .7]},
|
||||
'SI7020':{'id':0x14,
|
||||
'SI7020':{
|
||||
'TEMP14_HUM12':[.11,.12],
|
||||
'TEMP13_HUM10':[ .7, .5],
|
||||
'TEMP12_HUM08':[ .4, .4],
|
||||
'TEMP11_HUM11':[ .3, .7]},
|
||||
'SI7021':{'id':0x15,
|
||||
'SI7021':{
|
||||
'TEMP14_HUM12':[.11,.12],
|
||||
'TEMP13_HUM10':[ .7, .5],
|
||||
'TEMP12_HUM08':[ .4, .4],
|
||||
'TEMP11_HUM11':[ .3, .7]},
|
||||
'SHT21': {'id':0x31,
|
||||
'SHT21': {
|
||||
'TEMP14_HUM12':[.85,.29],
|
||||
'TEMP13_HUM10':[.43, .9],
|
||||
'TEMP12_HUM08':[.22, .4],
|
||||
'TEMP11_HUM11':[.11,.15]},
|
||||
'HTU21D':{'id':0x32,
|
||||
'HTU21D':{
|
||||
'TEMP14_HUM12':[.50,.16],
|
||||
'TEMP13_HUM10':[.25, .5],
|
||||
'TEMP12_HUM08':[.13, .3],
|
||||
@@ -128,19 +137,16 @@ class HTU21D:
|
||||
if self._chekCRC8(rdevId) != checksum:
|
||||
logging.warning("htu21d: Reading deviceId !Checksum error!")
|
||||
rdevId = rdevId >> 8
|
||||
deviceId_list = list(
|
||||
filter(
|
||||
lambda elem: HTU21D_DEVICES[elem]['id'] == rdevId,HTU21D_DEVICES)
|
||||
)
|
||||
if len(deviceId_list) != 0:
|
||||
logging.info("htu21d: Found Device Type %s" % deviceId_list[0])
|
||||
guess_dev = ID_MAP.get(rdevId, "Unknown")
|
||||
if guess_dev == self.deviceId:
|
||||
logging.info("htu21d: Found Device Type %s" % guess_dev)
|
||||
else:
|
||||
logging.warning("htu21d: Unknown Device ID %#x " % rdevId)
|
||||
|
||||
if self.deviceId != deviceId_list[0]:
|
||||
if self.deviceId != guess_dev:
|
||||
logging.warning(
|
||||
"htu21d: Found device %s. Forcing to type %s as config.",
|
||||
deviceId_list[0],self.deviceId)
|
||||
"htu21d: Found device %s. Forcing to type %s as config." %
|
||||
(guess_dev, self.deviceId))
|
||||
|
||||
# Set Resolution
|
||||
params = self.i2c.i2c_read([HTU21D_COMMANDS['READ']], 1)
|
||||
@@ -152,7 +158,7 @@ class HTU21D:
|
||||
|
||||
def _sample_htu21d(self, eventtime):
|
||||
try:
|
||||
# Read Temeprature
|
||||
# Read Temperature
|
||||
if self.hold_master_mode:
|
||||
params = self.i2c.i2c_write([HTU21D_COMMANDS['HTU21D_TEMP']])
|
||||
else:
|
||||
|
||||
@@ -51,12 +51,9 @@ class HX71xBase:
|
||||
self.batch_bulk = bulk_sensor.BatchBulkHelper(
|
||||
self.printer, self._process_batch, self._start_measurements,
|
||||
self._finish_measurements, UPDATE_INTERVAL)
|
||||
# publish raw samples to the socket
|
||||
dump_path = "%s/dump_%s" % (sensor_type, sensor_type)
|
||||
hdr = {'header': ('time', 'counts', 'value')}
|
||||
self.batch_bulk.add_mux_endpoint(dump_path, "sensor", self.name, hdr)
|
||||
# Command Configuration
|
||||
self.query_hx71x_cmd = None
|
||||
self.attach_probe_cmd = None
|
||||
mcu.add_config_cmd(
|
||||
"config_hx71x oid=%d gain_channel=%d dout_pin=%s sclk_pin=%s"
|
||||
% (self.oid, self.gain_channel, self.dout_pin, self.sclk_pin))
|
||||
@@ -68,10 +65,13 @@ class HX71xBase:
|
||||
def _build_config(self):
|
||||
self.query_hx71x_cmd = self.mcu.lookup_command(
|
||||
"query_hx71x oid=%c rest_ticks=%u")
|
||||
self.attach_probe_cmd = self.mcu.lookup_command(
|
||||
"hx71x_attach_load_cell_probe oid=%c load_cell_probe_oid=%c")
|
||||
self.ffreader.setup_query_command("query_hx71x_status oid=%c",
|
||||
oid=self.oid,
|
||||
cq=self.mcu.alloc_command_queue())
|
||||
|
||||
|
||||
def get_mcu(self):
|
||||
return self.mcu
|
||||
|
||||
@@ -87,6 +87,9 @@ class HX71xBase:
|
||||
def add_client(self, callback):
|
||||
self.batch_bulk.add_client(callback)
|
||||
|
||||
def attach_load_cell_probe(self, load_cell_probe_oid):
|
||||
self.attach_probe_cmd.send([self.oid, load_cell_probe_oid])
|
||||
|
||||
# Measurement decoding
|
||||
def _convert_samples(self, samples):
|
||||
adc_factor = 1. / (1 << 23)
|
||||
|
||||
173
klippy/extras/icm20948.py
Normal file
173
klippy/extras/icm20948.py
Normal file
@@ -0,0 +1,173 @@
|
||||
# Support for reading acceleration data from an icm20948 chip
|
||||
#
|
||||
# Copyright (C) 2024 Paul Hansel <github@paulhansel.com>
|
||||
# Copyright (C) 2022 Harry Beyel <harry3b9@gmail.com>
|
||||
# Copyright (C) 2020-2021 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
|
||||
# From https://invensense.tdk.com/wp-content/uploads/
|
||||
# 2016/06/DS-000189-ICM-20948-v1.3.pdf
|
||||
|
||||
import logging
|
||||
from . import bus, adxl345, bulk_sensor
|
||||
|
||||
ICM20948_ADDR = 0x68
|
||||
|
||||
ICM_DEV_IDS = {
|
||||
0xEA: "icm-20948",
|
||||
#everything above are normal ICM IDs
|
||||
}
|
||||
|
||||
# ICM20948 registers
|
||||
REG_DEVID = 0x00 # 0xEA
|
||||
REG_FIFO_EN = 0x67 # FIFO_EN_2
|
||||
REG_ACCEL_SMPLRT_DIV1 = 0x10 # MSB
|
||||
REG_ACCEL_SMPLRT_DIV2 = 0x11 # LSB
|
||||
REG_ACCEL_CONFIG = 0x14
|
||||
REG_USER_CTRL = 0x03
|
||||
REG_PWR_MGMT_1 = 0x06
|
||||
REG_PWR_MGMT_2 = 0x07
|
||||
REG_INT_STATUS = 0x19
|
||||
REG_BANK_SEL = 0x7F
|
||||
|
||||
SAMPLE_RATE_DIVS = { 4500: 0x00 }
|
||||
|
||||
SET_BANK_0 = 0x00
|
||||
SET_BANK_1 = 0x10
|
||||
SET_BANK_2 = 0x20
|
||||
SET_BANK_3 = 0x30
|
||||
SET_ACCEL_CONFIG = 0x06 # 16g full scale, 1209Hz BW, 4.5kHz samp rate
|
||||
SET_PWR_MGMT_1_WAKE = 0x01
|
||||
SET_PWR_MGMT_1_SLEEP = 0x41
|
||||
SET_PWR_MGMT_2_ACCEL_ON = 0x07
|
||||
SET_PWR_MGMT_2_OFF = 0x3F
|
||||
SET_USER_FIFO_RESET = 0x0E
|
||||
SET_USER_FIFO_EN = 0x40
|
||||
SET_ENABLE_FIFO = 0x10
|
||||
SET_DISABLE_FIFO = 0x00
|
||||
|
||||
FREEFALL_ACCEL = 9.80665 * 1000.
|
||||
# SCALE = 1/2048 g/LSB @16g scale * Earth gravity in mm/s**2
|
||||
SCALE = 0.00048828125 * FREEFALL_ACCEL
|
||||
|
||||
FIFO_SIZE = 512
|
||||
|
||||
BATCH_UPDATES = 0.100
|
||||
|
||||
# Printer class that controls ICM20948 chip
|
||||
class ICM20948:
|
||||
def __init__(self, config):
|
||||
self.printer = config.get_printer()
|
||||
adxl345.AccelCommandHelper(config, self)
|
||||
self.axes_map = adxl345.read_axes_map(config, SCALE, SCALE, SCALE)
|
||||
self.data_rate = config.getint('rate', 4500)
|
||||
if self.data_rate not in SAMPLE_RATE_DIVS:
|
||||
raise config.error("Invalid rate parameter: %d" % (self.data_rate,))
|
||||
# Setup mcu sensor_icm20948 bulk query code
|
||||
self.i2c = bus.MCU_I2C_from_config(config,
|
||||
default_addr=ICM20948_ADDR,
|
||||
default_speed=400000)
|
||||
self.mcu = mcu = self.i2c.get_mcu()
|
||||
self.oid = mcu.create_oid()
|
||||
self.query_icm20948_cmd = None
|
||||
mcu.register_config_callback(self._build_config)
|
||||
# Bulk sample message reading
|
||||
chip_smooth = self.data_rate * BATCH_UPDATES * 2
|
||||
self.ffreader = bulk_sensor.FixedFreqReader(mcu, chip_smooth, ">hhh")
|
||||
self.last_error_count = 0
|
||||
# Process messages in batches
|
||||
self.batch_bulk = bulk_sensor.BatchBulkHelper(
|
||||
self.printer, self._process_batch,
|
||||
self._start_measurements, self._finish_measurements, BATCH_UPDATES)
|
||||
self.name = config.get_name().split()[-1]
|
||||
hdr = ('time', 'x_acceleration', 'y_acceleration', 'z_acceleration')
|
||||
self.batch_bulk.add_mux_endpoint("icm20948/dump_icm20948", "sensor",
|
||||
self.name, {'header': hdr})
|
||||
def _build_config(self):
|
||||
cmdqueue = self.i2c.get_command_queue()
|
||||
self.mcu.add_config_cmd("config_icm20948 oid=%d i2c_oid=%d"
|
||||
% (self.oid, self.i2c.get_oid()))
|
||||
self.mcu.add_config_cmd("query_icm20948 oid=%d rest_ticks=0"
|
||||
% (self.oid,), on_restart=True)
|
||||
self.query_icm20948_cmd = self.mcu.lookup_command(
|
||||
"query_icm20948 oid=%c rest_ticks=%u", cq=cmdqueue)
|
||||
self.ffreader.setup_query_command("query_icm20948_status oid=%c",
|
||||
oid=self.oid, cq=cmdqueue)
|
||||
def read_reg(self, reg):
|
||||
params = self.i2c.i2c_read([reg], 1)
|
||||
return bytearray(params['response'])[0]
|
||||
def set_reg(self, reg, val, minclock=0):
|
||||
self.i2c.i2c_write([reg, val & 0xFF], minclock=minclock)
|
||||
def start_internal_client(self):
|
||||
aqh = adxl345.AccelQueryHelper(self.printer)
|
||||
self.batch_bulk.add_client(aqh.handle_batch)
|
||||
return aqh
|
||||
# Measurement decoding
|
||||
def _convert_samples(self, samples):
|
||||
(x_pos, x_scale), (y_pos, y_scale), (z_pos, z_scale) = self.axes_map
|
||||
count = 0
|
||||
for ptime, rx, ry, rz in samples:
|
||||
raw_xyz = (rx, ry, rz)
|
||||
x = round(raw_xyz[x_pos] * x_scale, 6)
|
||||
y = round(raw_xyz[y_pos] * y_scale, 6)
|
||||
z = round(raw_xyz[z_pos] * z_scale, 6)
|
||||
samples[count] = (round(ptime, 6), x, y, z)
|
||||
count += 1
|
||||
# Start, stop, and process message batches
|
||||
def _start_measurements(self):
|
||||
# In case of miswiring, testing ICM20948 device ID prevents treating
|
||||
# noise or wrong signal as a correctly initialized device
|
||||
dev_id = self.read_reg(REG_DEVID)
|
||||
if dev_id not in ICM_DEV_IDS.keys():
|
||||
raise self.printer.command_error(
|
||||
"Invalid mpu id (got %x).\n"
|
||||
"This is generally indicative of connection problems\n"
|
||||
"(e.g. faulty wiring) or a faulty chip."
|
||||
% (dev_id))
|
||||
else:
|
||||
logging.info("Found %s with id %x"% (ICM_DEV_IDS[dev_id], dev_id))
|
||||
# Setup chip in requested query rate
|
||||
self.set_reg(REG_PWR_MGMT_1, SET_PWR_MGMT_1_WAKE)
|
||||
self.set_reg(REG_PWR_MGMT_2, SET_PWR_MGMT_2_ACCEL_ON)
|
||||
# Don't add 20ms pause for accelerometer chip wake up
|
||||
self.read_reg(REG_DEVID) # Dummy read to ensure queues flushed
|
||||
self.set_reg(REG_ACCEL_SMPLRT_DIV1, SAMPLE_RATE_DIVS[self.data_rate])
|
||||
self.set_reg(REG_ACCEL_SMPLRT_DIV2, SAMPLE_RATE_DIVS[self.data_rate])
|
||||
self.set_reg(REG_BANK_SEL, SET_BANK_2)
|
||||
self.set_reg(REG_ACCEL_CONFIG, SET_ACCEL_CONFIG)
|
||||
self.set_reg(REG_BANK_SEL, SET_BANK_0)
|
||||
# Reset fifo
|
||||
self.set_reg(REG_FIFO_EN, SET_DISABLE_FIFO)
|
||||
self.set_reg(REG_USER_CTRL, SET_USER_FIFO_RESET)
|
||||
self.set_reg(REG_USER_CTRL, SET_USER_FIFO_EN)
|
||||
self.read_reg(REG_INT_STATUS) # clear FIFO overflow flag
|
||||
# Start bulk reading
|
||||
rest_ticks = self.mcu.seconds_to_clock(4. / self.data_rate)
|
||||
self.query_icm20948_cmd.send([self.oid, rest_ticks])
|
||||
self.set_reg(REG_FIFO_EN, SET_ENABLE_FIFO)
|
||||
logging.info("ICM20948 starting '%s' measurements", self.name)
|
||||
# Initialize clock tracking
|
||||
self.ffreader.note_start()
|
||||
self.last_error_count = 0
|
||||
def _finish_measurements(self):
|
||||
# Halt bulk reading
|
||||
self.set_reg(REG_FIFO_EN, SET_DISABLE_FIFO)
|
||||
self.query_icm20948_cmd.send_wait_ack([self.oid, 0])
|
||||
self.ffreader.note_end()
|
||||
logging.info("ICM20948 finished '%s' measurements", self.name)
|
||||
self.set_reg(REG_PWR_MGMT_1, SET_PWR_MGMT_1_SLEEP)
|
||||
self.set_reg(REG_PWR_MGMT_2, SET_PWR_MGMT_2_OFF)
|
||||
def _process_batch(self, eventtime):
|
||||
samples = self.ffreader.pull_samples()
|
||||
self._convert_samples(samples)
|
||||
if not samples:
|
||||
return {}
|
||||
return {'data': samples, 'errors': self.last_error_count,
|
||||
'overflows': self.ffreader.get_last_overflows()}
|
||||
|
||||
def load_config(config):
|
||||
return ICM20948(config)
|
||||
|
||||
def load_config_prefix(config):
|
||||
return ICM20948(config)
|
||||
@@ -35,7 +35,9 @@ class IdleTimeout:
|
||||
printing_time = 0.
|
||||
if self.state == "Printing":
|
||||
printing_time = eventtime - self.last_print_start_systime
|
||||
return { "state": self.state, "printing_time": printing_time }
|
||||
return {"state": self.state,
|
||||
"printing_time": printing_time,
|
||||
"idle_timeout": self.idle_timeout}
|
||||
def handle_ready(self):
|
||||
self.toolhead = self.printer.lookup_object('toolhead')
|
||||
self.timeout_timer = self.reactor.register_timer(self.timeout_handler)
|
||||
|
||||
@@ -69,6 +69,8 @@ class AxisInputShaper:
|
||||
ffi_lib.input_shaper_set_shaper_params(
|
||||
sk, self.axis.encode(), self.n, self.A, self.T)
|
||||
return success
|
||||
def is_enabled(self):
|
||||
return self.n > 0
|
||||
def disable_shaping(self):
|
||||
if self.saved is None and self.n:
|
||||
self.saved = (self.n, self.A, self.T)
|
||||
@@ -89,6 +91,8 @@ class InputShaper:
|
||||
def __init__(self, config):
|
||||
self.printer = config.get_printer()
|
||||
self.printer.register_event_handler("klippy:connect", self.connect)
|
||||
self.printer.register_event_handler("dual_carriage:update_kinematics",
|
||||
self._update_kinematics)
|
||||
self.toolhead = None
|
||||
self.shapers = [AxisInputShaper('x', config),
|
||||
AxisInputShaper('y', config)]
|
||||
@@ -103,17 +107,23 @@ class InputShaper:
|
||||
return self.shapers
|
||||
def connect(self):
|
||||
self.toolhead = self.printer.lookup_object("toolhead")
|
||||
dual_carriage = self.printer.lookup_object('dual_carriage', None)
|
||||
if dual_carriage is not None:
|
||||
for shaper in self.shapers:
|
||||
if shaper.is_enabled():
|
||||
raise self.printer.config_error(
|
||||
'Input shaper parameters cannot be configured via'
|
||||
' [input_shaper] section with dual_carriage(s) '
|
||||
' enabled. Refer to Klipper documentation on how '
|
||||
' to configure input shaper for dual_carriage(s).')
|
||||
return
|
||||
# Configure initial values
|
||||
self._update_input_shaping(error=self.printer.config_error)
|
||||
def _get_input_shaper_stepper_kinematics(self, stepper):
|
||||
# Lookup stepper kinematics
|
||||
sk = stepper.get_stepper_kinematics()
|
||||
if sk in self.orig_stepper_kinematics:
|
||||
# Already processed this stepper kinematics unsuccessfully
|
||||
return None
|
||||
if sk in self.input_shaper_stepper_kinematics:
|
||||
return sk
|
||||
self.orig_stepper_kinematics.append(sk)
|
||||
ffi_main, ffi_lib = chelper.get_ffi()
|
||||
is_sk = ffi_main.gc(ffi_lib.input_shaper_alloc(), ffi_lib.free)
|
||||
stepper.set_stepper_kinematics(is_sk)
|
||||
@@ -121,8 +131,27 @@ class InputShaper:
|
||||
if res < 0:
|
||||
stepper.set_stepper_kinematics(sk)
|
||||
return None
|
||||
self.orig_stepper_kinematics.append(sk)
|
||||
self.input_shaper_stepper_kinematics.append(is_sk)
|
||||
return is_sk
|
||||
def _update_kinematics(self):
|
||||
if self.toolhead is None:
|
||||
# Klipper initialization is not yet completed
|
||||
return
|
||||
ffi_main, ffi_lib = chelper.get_ffi()
|
||||
kin = self.toolhead.get_kinematics()
|
||||
for s in kin.get_steppers():
|
||||
if s.get_trapq() is None:
|
||||
continue
|
||||
is_sk = self._get_input_shaper_stepper_kinematics(s)
|
||||
if is_sk is None:
|
||||
continue
|
||||
old_delay = ffi_lib.input_shaper_get_step_generation_window(is_sk)
|
||||
ffi_lib.input_shaper_update_sk(is_sk)
|
||||
new_delay = ffi_lib.input_shaper_get_step_generation_window(is_sk)
|
||||
if old_delay != new_delay:
|
||||
self.toolhead.note_step_generation_scan_time(new_delay,
|
||||
old_delay)
|
||||
def _update_input_shaping(self, error=None):
|
||||
self.toolhead.flush_step_generation()
|
||||
ffi_main, ffi_lib = chelper.get_ffi()
|
||||
|
||||
@@ -12,7 +12,7 @@ BATCH_UPDATES = 0.100
|
||||
|
||||
LDC1612_ADDR = 0x2a
|
||||
|
||||
LDC1612_FREQ = 12000000
|
||||
DEFAULT_LDC1612_FREQ = 12000000
|
||||
SETTLETIME = 0.005
|
||||
DRIVECUR = 15
|
||||
DEGLITCH = 0x05 # 10 Mhz
|
||||
@@ -87,6 +87,8 @@ class LDC1612:
|
||||
self.oid = oid = mcu.create_oid()
|
||||
self.query_ldc1612_cmd = None
|
||||
self.ldc1612_setup_home_cmd = self.query_ldc1612_home_state_cmd = None
|
||||
self.frequency = config.getint("frequency", DEFAULT_LDC1612_FREQ,
|
||||
2000000, 40000000)
|
||||
if config.get('intb_pin', None) is not None:
|
||||
ppins = config.get_printer().lookup_object("pins")
|
||||
pin_params = ppins.lookup_pin(config.get('intb_pin'))
|
||||
@@ -141,7 +143,7 @@ class LDC1612:
|
||||
def setup_home(self, print_time, trigger_freq,
|
||||
trsync_oid, hit_reason, err_reason):
|
||||
clock = self.mcu.print_time_to_clock(print_time)
|
||||
tfreq = int(trigger_freq * (1<<28) / float(LDC1612_FREQ) + 0.5)
|
||||
tfreq = int(trigger_freq * (1<<28) / float(self.frequency) + 0.5)
|
||||
self.ldc1612_setup_home_cmd.send(
|
||||
[self.oid, clock, tfreq, trsync_oid, hit_reason, err_reason])
|
||||
def clear_home(self):
|
||||
@@ -153,7 +155,7 @@ class LDC1612:
|
||||
return self.mcu.clock_to_print_time(tclock)
|
||||
# Measurement decoding
|
||||
def _convert_samples(self, samples):
|
||||
freq_conv = float(LDC1612_FREQ) / (1<<28)
|
||||
freq_conv = float(self.frequency) / (1<<28)
|
||||
count = 0
|
||||
for ptime, val in samples:
|
||||
mv = val & 0x0fffffff
|
||||
@@ -174,10 +176,10 @@ class LDC1612:
|
||||
"(e.g. faulty wiring) or a faulty ldc1612 chip."
|
||||
% (manuf_id, dev_id, LDC1612_MANUF_ID, LDC1612_DEV_ID))
|
||||
# Setup chip in requested query rate
|
||||
rcount0 = LDC1612_FREQ / (16. * (self.data_rate - 4))
|
||||
rcount0 = self.frequency / (16. * (self.data_rate - 4))
|
||||
self.set_reg(REG_RCOUNT0, int(rcount0 + 0.5))
|
||||
self.set_reg(REG_OFFSET0, 0)
|
||||
self.set_reg(REG_SETTLECOUNT0, int(SETTLETIME*LDC1612_FREQ/16. + .5))
|
||||
self.set_reg(REG_SETTLECOUNT0, int(SETTLETIME*self.frequency/16. + .5))
|
||||
self.set_reg(REG_CLOCK_DIVIDERS0, (1 << 12) | 1)
|
||||
self.set_reg(REG_ERROR_CONFIG, (0x1f << 11) | 1)
|
||||
self.set_reg(REG_MUX_CONFIG, 0x0208 | DEGLITCH)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Support for PWM driven LEDs
|
||||
#
|
||||
# Copyright (C) 2019-2024 Kevin O'Connor <kevin@koconnor.net>
|
||||
# Copyright (C) 2019-2025 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import logging
|
||||
@@ -21,7 +21,7 @@ class LEDHelper:
|
||||
self.led_state = [(red, green, blue, white)] * led_count
|
||||
# Support setting an led template
|
||||
self.template_eval = output_pin.lookup_template_eval(config)
|
||||
self.tcallbacks = [(lambda text, s=self, index=i:
|
||||
self.tcallbacks = [(lambda text, s=self, index=i+1:
|
||||
s._template_update(index, text))
|
||||
for i in range(led_count)]
|
||||
# Register commands
|
||||
@@ -97,17 +97,15 @@ class LEDHelper:
|
||||
for i in range(self.led_count):
|
||||
set_template(gcmd, self.tcallbacks[i], self._check_transmit)
|
||||
|
||||
PIN_MIN_TIME = 0.100
|
||||
MAX_SCHEDULE_TIME = 5.0
|
||||
|
||||
# Handler for PWM controlled LEDs
|
||||
class PrinterPWMLED:
|
||||
def __init__(self, config):
|
||||
self.printer = printer = config.get_printer()
|
||||
# Configure pwm pins
|
||||
ppins = printer.lookup_object('pins')
|
||||
max_duration = printer.lookup_object('mcu').max_nominal_duration()
|
||||
cycle_time = config.getfloat('cycle_time', 0.010, above=0.,
|
||||
maxval=MAX_SCHEDULE_TIME)
|
||||
maxval=max_duration)
|
||||
hardware_pwm = config.getboolean('hardware_pwm', False)
|
||||
self.pins = []
|
||||
for i, name in enumerate(("red", "green", "blue", "white")):
|
||||
@@ -128,11 +126,12 @@ class PrinterPWMLED:
|
||||
for idx, mcu_pin in self.pins:
|
||||
mcu_pin.setup_start_value(color[idx], 0.)
|
||||
def update_leds(self, led_state, print_time):
|
||||
mcu = self.pins[0][1].get_mcu()
|
||||
min_sched_time = mcu.min_schedule_time()
|
||||
if print_time is None:
|
||||
eventtime = self.printer.get_reactor().monotonic()
|
||||
mcu = self.pins[0][1].get_mcu()
|
||||
print_time = mcu.estimated_print_time(eventtime) + PIN_MIN_TIME
|
||||
print_time = max(print_time, self.last_print_time + PIN_MIN_TIME)
|
||||
print_time = mcu.estimated_print_time(eventtime) + min_sched_time
|
||||
print_time = max(print_time, self.last_print_time + min_sched_time)
|
||||
color = led_state[0]
|
||||
for idx, mcu_pin in self.pins:
|
||||
if self.prev_color[idx] != color[idx]:
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user