591 lines
14 KiB
C++
591 lines
14 KiB
C++
/*
|
|
Dark Water 640 driver code is placed under the BSD license.
|
|
Written by Team Dark Water (team@darkwater.io) based off libraries by Adafruit https://github.com/adafruit/Adafruit_Motor_Shield_V2_Library
|
|
Copyright (c) 2014, Dark Water
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the name of the Emlid Limited nor the names of its contributors
|
|
may be used to endorse or promote products derived from this software
|
|
without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL EMLID LIMITED BE LIABLE FOR ANY
|
|
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "DW640.h"
|
|
|
|
#if (MICROSTEPS == 8)
|
|
uint8_t microstepcurve[] = {0, 50, 98, 142, 180, 212, 236, 250, 255};
|
|
#elif (MICROSTEPS == 16)
|
|
uint8_t microstepcurve[] = {0, 25, 50, 74, 98, 120, 141, 162, 180, 197, 212, 225, 236, 244, 250, 253, 255};
|
|
#endif
|
|
|
|
/** PCA9685 constructor.
|
|
* @param address I2C address
|
|
* @see DW640_DEFAULT_ADDRESS
|
|
*/
|
|
DW640::DW640(uint8_t address) {
|
|
this->devAddr = address;
|
|
}
|
|
|
|
/** Power on and prepare for general usage.
|
|
* This method reads prescale value stored in PCA9685 and calculate frequency based on it.
|
|
* Then it enables auto-increment of register address to allow for faster writes.
|
|
* And finally the restart is performed to enable clocking.
|
|
*/
|
|
bool DW640::initialize() {
|
|
this->pwm = new PCA9685( this->devAddr );
|
|
this->pwm->initialize();
|
|
if (!testConnection() ) {
|
|
printf("No 640 board found\n");
|
|
return 0;
|
|
}
|
|
// set the default frequency
|
|
setFrequency( 100 );
|
|
// Create the mode pin
|
|
this->modePin = new Pin( RPI_GPIO_27 );
|
|
if (!this->modePin->init()) {
|
|
fprintf(stderr, "Pin Mode can not be set. Are you root?");
|
|
return 0;
|
|
}
|
|
this->modePin->setMode(Pin::GpioModeOutput);
|
|
// set the default mode to ININ
|
|
setMode( DW_ININ );
|
|
|
|
}
|
|
|
|
/** Verify the I2C connection.
|
|
* @return True if connection is valid, false otherwise
|
|
*/
|
|
bool DW640::testConnection() {
|
|
return this->pwm->testConnection();
|
|
}
|
|
|
|
/** Calculate prescale value based on the specified frequency and write it to the device.
|
|
* @return Frequency in Hz
|
|
*/
|
|
float DW640::getFrequency() {
|
|
return this->pwm->getFrequency();
|
|
}
|
|
|
|
|
|
/** Calculate prescale value based on the specified frequency and write it to the device.
|
|
* @param Frequency in Hz
|
|
*/
|
|
void DW640::setFrequency(float frequency) {
|
|
this->pwm->setFrequency( frequency );
|
|
}
|
|
|
|
/** Calculate prescale value based on the specified frequency and write it to the device.
|
|
* @return Frequency in Hz
|
|
*/
|
|
uint8_t DW640::getMode() {
|
|
return this->mode;
|
|
}
|
|
|
|
|
|
/** Calculate prescale value based on the specified frequency and write it to the device.
|
|
* @param Frequency in Hz
|
|
*/
|
|
void DW640::setMode(uint8_t mode) {
|
|
this->modePin->write( mode );
|
|
this->mode = mode;
|
|
}
|
|
|
|
/** Set channel start offset of the pulse and it's length
|
|
* @param Channel number (0-15)
|
|
* @param Offset (0-4095)
|
|
* @param Length (0-4095)
|
|
*/
|
|
void DW640::setPWM(uint8_t channel, uint16_t offset, uint16_t length) {
|
|
this->pwm->setPWM( channel, offset, length );
|
|
}
|
|
|
|
/** Set channel's pulse length
|
|
* @param Channel number (0-15)
|
|
* @param Length (0-4095)
|
|
*/
|
|
void DW640::setPWM(uint8_t channel, uint16_t length) {
|
|
this->pwm->setPWM(channel, length);
|
|
}
|
|
|
|
/** Set channel's pulse length in milliseconds
|
|
* @param Channel number (0-15)
|
|
* @param Length in milliseconds
|
|
*/
|
|
void DW640::setPWMmS(uint8_t channel, float length_mS) {
|
|
this->pwm->setPWMmS(channel, length_mS);
|
|
}
|
|
|
|
/** Set channel's pulse length in microseconds
|
|
* @param Channel number (0-15)
|
|
* @param Length in microseconds
|
|
*/
|
|
void DW640::setPWMuS(uint8_t channel, float length_uS) {
|
|
this->pwm->setPWMuS(channel, length_uS);
|
|
}
|
|
|
|
/** Set start offset of the pulse and it's length for all channels
|
|
* @param Offset (0-4095)
|
|
* @param Length (0-4095)
|
|
*/
|
|
void DW640::setAllPWM(uint16_t offset, uint16_t length) {
|
|
this->pwm->setAllPWM(offset, length);
|
|
}
|
|
|
|
/** Set pulse length for all channels
|
|
* @param Length (0-4095)
|
|
*/
|
|
void DW640::setAllPWM(uint16_t length) {
|
|
this->pwm->setAllPWM(length);
|
|
}
|
|
|
|
/** Set pulse length in milliseconds for all channels
|
|
* @param Length in milliseconds
|
|
*/
|
|
void DW640::setAllPWMmS(float length_mS) {
|
|
this->pwm->setAllPWMmS(length_mS);
|
|
}
|
|
|
|
/** Set pulse length in microseconds for all channels
|
|
* @param Length in microseconds
|
|
*/
|
|
void DW640::setAllPWMuS(float length_uS) {
|
|
this->pwm->setAllPWMuS(length_uS);
|
|
}
|
|
|
|
void DW640::setPin(uint8_t channel, uint8_t value) {
|
|
|
|
if( channel < 0 || channel > 15 ) {
|
|
fprintf(stderr, "PWM pin must be between 0 and 15 inclusive");
|
|
}
|
|
|
|
if( value == 0 ) {
|
|
setPWM( channel, 0, 4096 );
|
|
} else if( value == 1 ) {
|
|
setPWM( channel, 4096, 0 );
|
|
} else {
|
|
fprintf(stderr, "Pin value must be 0 or 1!");
|
|
}
|
|
}
|
|
|
|
void DW640::setAllPin(uint8_t value) {
|
|
|
|
if( value == 0 ) {
|
|
setAllPWM( 0, 4096 );
|
|
} else if( value == 1 ) {
|
|
setAllPWM( 4096, 0 );
|
|
} else {
|
|
fprintf(stderr, "Pin value must be 0 or 1!");
|
|
}
|
|
|
|
}
|
|
|
|
void DW640::allOff() {
|
|
setAllPin( 0 );
|
|
}
|
|
|
|
/* DC Motor specific code */
|
|
|
|
DW_Motor *DW640::getMotor(uint8_t motor) {
|
|
|
|
uint8_t in1;
|
|
uint8_t in2;
|
|
|
|
motor--;
|
|
|
|
// Get the motor
|
|
switch(motor) {
|
|
case 0:
|
|
in2 = 2;
|
|
in1 = 3;
|
|
break;
|
|
case 1:
|
|
in2 = 4;
|
|
in1 = 5;
|
|
break;
|
|
case 2:
|
|
in2 = 6;
|
|
in1 = 7;
|
|
break;
|
|
case 3:
|
|
in2 = 8;
|
|
in1 = 9;
|
|
break;
|
|
case 4:
|
|
in2 = 10;
|
|
in1 = 11;
|
|
break;
|
|
case 5:
|
|
in2 = 12;
|
|
in1 = 13;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Motor number must be between 1 and 6 inclusive");
|
|
}
|
|
|
|
if(motors[motor].motor == 0) {
|
|
// We don't have one yet
|
|
motors[motor].motor = motor; // how many motors on one line?!?
|
|
motors[motor].DWC = this;
|
|
|
|
motors[motor].in1 = in1;
|
|
motors[motor].in2 = in2;
|
|
}
|
|
|
|
return &motors[motor];
|
|
|
|
}
|
|
|
|
DW_Servo *DW640::getServo(uint8_t servo) {
|
|
|
|
uint8_t pin;
|
|
|
|
servo--;
|
|
|
|
// Get the servo
|
|
switch(servo) {
|
|
case 0:
|
|
pin = 0; // Servo 1 is on PWM 0
|
|
break;
|
|
case 1:
|
|
pin = 1; // Servo 2 is on PWM 1
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Servo number must be between 1 and 2 inclusive");
|
|
}
|
|
|
|
if(servos[servo].servo == 0) {
|
|
// We don't have one yet
|
|
servos[servo].servo = servo; // how many servos on one line?!?
|
|
servos[servo].DWC = this;
|
|
|
|
servos[servo].pin = pin;
|
|
}
|
|
|
|
return &servos[servo];
|
|
|
|
}
|
|
|
|
DW_Stepper *DW640::getStepper(uint8_t stepper, uint16_t steps) {
|
|
|
|
stepper--;
|
|
|
|
uint8_t ain1, ain2, bin1, bin2;
|
|
|
|
// Get the stepper
|
|
switch(stepper) {
|
|
case 0:
|
|
ain1 = 2;
|
|
ain2 = 3;
|
|
bin1 = 4;
|
|
bin2 = 5;
|
|
break;
|
|
case 1:
|
|
ain1 = 6;
|
|
ain2 = 7;
|
|
bin1 = 8;
|
|
bin2 = 9;
|
|
break;
|
|
case 2:
|
|
ain1 = 10;
|
|
ain2 = 11;
|
|
bin1 = 12;
|
|
bin2 = 13;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Stepper number must be between 1 and 3 inclusive");
|
|
}
|
|
|
|
if (steppers[stepper].stepper == 0) {
|
|
// not init'd yet!
|
|
steppers[stepper].stepper = stepper;
|
|
steppers[stepper].revsteps = steps;
|
|
steppers[stepper].DWC = this;
|
|
|
|
steppers[stepper].AIN1pin = ain1;
|
|
steppers[stepper].AIN2pin = ain2;
|
|
steppers[stepper].BIN1pin = bin1;
|
|
steppers[stepper].BIN2pin = bin2;
|
|
|
|
// We need to set the board mode to ININ now that we have a stepper in existence
|
|
setMode(DW_ININ);
|
|
}
|
|
return &steppers[stepper];
|
|
}
|
|
|
|
/* Motors code */
|
|
|
|
DW_Motor::DW_Motor(void) {
|
|
DWC = NULL;
|
|
motor = 0;
|
|
in1 = in2 = 0;
|
|
}
|
|
|
|
void DW_Motor::setMotorSpeed(int16_t speed) {
|
|
|
|
// Speed deciphering for the two control modes
|
|
if( speed >= 1000 && speed < 1500 ) {
|
|
run( DW_REVERSE, map(speed, 1500, 1000, 0, 255 ) );
|
|
} else if( speed > 1500 && speed <= 2000 ) {
|
|
run( DW_FORWARD, map(speed, 1500, 2000, 0, 255 ) );
|
|
} else if( speed > 0 && speed <= 255 ) {
|
|
run( DW_FORWARD, speed );
|
|
} else if( speed < 0 && speed >= -255 ) {
|
|
run( DW_REVERSE, abs(speed) );
|
|
} else if( speed == 0 || speed == 1500 ) {
|
|
run( DW_STOP, speed );
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
void DW_Motor::off(void) {
|
|
setMotorSpeed( 0 );
|
|
}
|
|
|
|
void DW_Motor::run( uint8_t control, uint16_t speed ) {
|
|
// get the mode
|
|
if( DWC->getMode() == DW_PHASE ) {
|
|
if( control == DW_FORWARD ) {
|
|
DWC->setPin( in2, 0 );
|
|
DWC->setPWM( in1, 0, speed * 16 );
|
|
} else if( control == DW_REVERSE ) {
|
|
DWC->setPin( in2, 1 );
|
|
DWC->setPWM( in1, 0, speed * 16 );
|
|
} else if( control == DW_STOP ) {
|
|
DWC->setPin( in2, 0 );
|
|
DWC->setPin( in1, 0 );
|
|
}
|
|
} else { // DW_ININ
|
|
if( control == DW_FORWARD ) {
|
|
DWC->setPin( in2, 0 );
|
|
DWC->setPWM( in1, 0, speed * 16 );
|
|
} else if( control == DW_REVERSE ) {
|
|
DWC->setPin( in1, 0 );
|
|
DWC->setPWM( in2, 0, speed * 16 );
|
|
} else if( control == DW_STOP ) {
|
|
DWC->setPin( in1, 1 );
|
|
DWC->setPin( in2, 1 );
|
|
} else if( control == DW_COAST ) {
|
|
DWC->setPin( in1, 0 );
|
|
DWC->setPin( in2, 0 );
|
|
}
|
|
}
|
|
}
|
|
|
|
uint16_t DW_Motor::map(uint16_t x, uint16_t in_min, uint16_t in_max, uint16_t out_min, uint16_t out_max)
|
|
{
|
|
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
|
|
}
|
|
|
|
/* Servo code */
|
|
|
|
DW_Servo::DW_Servo(void) {
|
|
DWC = NULL;
|
|
servo = 0;
|
|
pin = 0;
|
|
}
|
|
|
|
void DW_Servo::off(void) {
|
|
|
|
DWC->setPin( pin, 0 );
|
|
|
|
}
|
|
|
|
void DW_Servo::setPWMmS(float length_mS) {
|
|
|
|
DWC->setPWMmS( pin, length_mS ); // Servo 1 is on PWM 0
|
|
|
|
}
|
|
|
|
void DW_Servo::setPWMuS(float length_uS) {
|
|
|
|
DWC->setPWMuS( pin, length_uS ); // Servo 1 is on PWM 0
|
|
|
|
|
|
}
|
|
|
|
/* Stepper functions */
|
|
|
|
DW_Stepper::DW_Stepper(void) {
|
|
revsteps = stepper = currentstep = 0;
|
|
}
|
|
|
|
void DW_Stepper::setMotorSpeed(uint16_t rpm) {
|
|
|
|
usperstep = 60000000 / ((uint32_t)revsteps * (uint32_t)rpm);
|
|
}
|
|
|
|
void DW_Stepper::off(void) {
|
|
DWC->setPin(AIN1pin, 0);
|
|
DWC->setPin(AIN2pin, 0);
|
|
DWC->setPin(BIN1pin, 0);
|
|
DWC->setPin(BIN2pin, 0);
|
|
}
|
|
|
|
void DW_Stepper::step(uint16_t steps, uint8_t dir, uint8_t style) {
|
|
uint32_t uspers = usperstep;
|
|
uint8_t ret = 0;
|
|
|
|
if (style == DW_MICROSTEP) {
|
|
uspers /= MICROSTEPS;
|
|
steps *= MICROSTEPS;
|
|
}
|
|
|
|
while (steps--) {
|
|
ret = oneStep(dir, style);
|
|
usleep(uspers);
|
|
}
|
|
}
|
|
|
|
uint8_t DW_Stepper::oneStep(uint8_t dir, uint8_t style) {
|
|
uint8_t a, b, c, d;
|
|
uint8_t ocrb, ocra;
|
|
|
|
ocra = ocrb = 255; // We're not using these for now
|
|
|
|
// next determine what sort of stepping procedure we're up to
|
|
if (style == DW_SINGLE) {
|
|
if ((currentstep/(MICROSTEPS/2)) % 2) { // we're at an odd step, weird
|
|
if (dir == DW_FORWARD) {
|
|
currentstep += MICROSTEPS/2;
|
|
} else {
|
|
currentstep -= MICROSTEPS/2;
|
|
}
|
|
} else { // go to the next even step
|
|
if (dir == DW_FORWARD) {
|
|
currentstep += MICROSTEPS;
|
|
} else {
|
|
currentstep -= MICROSTEPS;
|
|
}
|
|
}
|
|
} else if (style == DW_DOUBLE) {
|
|
if (! (currentstep/(MICROSTEPS/2) % 2)) { // we're at an even step, weird
|
|
if (dir == DW_FORWARD) {
|
|
currentstep += MICROSTEPS/2;
|
|
} else {
|
|
currentstep -= MICROSTEPS/2;
|
|
}
|
|
} else { // go to the next odd step
|
|
if (dir == DW_FORWARD) {
|
|
currentstep += MICROSTEPS;
|
|
} else {
|
|
currentstep -= MICROSTEPS;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Not tested this bit for now
|
|
if (style == DW_MICROSTEP) {
|
|
if (dir == DW_FORWARD) {
|
|
currentstep++;
|
|
} else {
|
|
// BACKWARDS
|
|
currentstep--;
|
|
}
|
|
|
|
currentstep += MICROSTEPS*4;
|
|
currentstep %= MICROSTEPS*4;
|
|
|
|
ocra = ocrb = 0;
|
|
if ( (currentstep >= 0) && (currentstep < MICROSTEPS)) {
|
|
ocra = microstepcurve[MICROSTEPS - currentstep];
|
|
ocrb = microstepcurve[currentstep];
|
|
} else if ( (currentstep >= MICROSTEPS) && (currentstep < MICROSTEPS*2)) {
|
|
ocra = microstepcurve[currentstep - MICROSTEPS];
|
|
ocrb = microstepcurve[MICROSTEPS*2 - currentstep];
|
|
} else if ( (currentstep >= MICROSTEPS*2) && (currentstep < MICROSTEPS*3)) {
|
|
ocra = microstepcurve[MICROSTEPS*3 - currentstep];
|
|
ocrb = microstepcurve[currentstep - MICROSTEPS*2];
|
|
} else if ( (currentstep >= MICROSTEPS*3) && (currentstep < MICROSTEPS*4)) {
|
|
ocra = microstepcurve[currentstep - MICROSTEPS*3];
|
|
ocrb = microstepcurve[MICROSTEPS*4 - currentstep];
|
|
}
|
|
}
|
|
|
|
currentstep += MICROSTEPS*4;
|
|
currentstep %= MICROSTEPS*4;
|
|
|
|
// release all
|
|
uint8_t latch_state = 0; // all motor pins to 0
|
|
|
|
if (style == DW_MICROSTEP) {
|
|
if ((currentstep >= 0) && (currentstep < MICROSTEPS))
|
|
latch_state |= 0x03;
|
|
if ((currentstep >= MICROSTEPS) && (currentstep < MICROSTEPS*2))
|
|
latch_state |= 0x06;
|
|
if ((currentstep >= MICROSTEPS*2) && (currentstep < MICROSTEPS*3))
|
|
latch_state |= 0x0C;
|
|
if ((currentstep >= MICROSTEPS*3) && (currentstep < MICROSTEPS*4))
|
|
latch_state |= 0x09;
|
|
} else {
|
|
switch (currentstep/(MICROSTEPS/2)) {
|
|
case 0:
|
|
latch_state |= 0x1; // energize coil 1 only
|
|
break;
|
|
case 1:
|
|
latch_state |= 0x3; // energize coil 1+2
|
|
break;
|
|
case 2:
|
|
latch_state |= 0x2; // energize coil 2 only
|
|
break;
|
|
case 3:
|
|
latch_state |= 0x6; // energize coil 2+3
|
|
break;
|
|
case 4:
|
|
latch_state |= 0x4; // energize coil 3 only
|
|
break;
|
|
case 5:
|
|
latch_state |= 0xC; // energize coil 3+4
|
|
break;
|
|
case 6:
|
|
latch_state |= 0x8; // energize coil 4 only
|
|
break;
|
|
case 7:
|
|
latch_state |= 0x9; // energize coil 1+4
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (latch_state & 0x1) {
|
|
DWC->setPin(AIN2pin, 1);
|
|
} else {
|
|
DWC->setPin(AIN2pin, 0);
|
|
}
|
|
if (latch_state & 0x2) {
|
|
DWC->setPin(BIN1pin, 1);
|
|
} else {
|
|
DWC->setPin(BIN1pin, 0);
|
|
}
|
|
if (latch_state & 0x4) {
|
|
DWC->setPin(AIN1pin, 1);
|
|
} else {
|
|
DWC->setPin(AIN1pin, 0);
|
|
}
|
|
if (latch_state & 0x8) {
|
|
DWC->setPin(BIN2pin, 1);
|
|
} else {
|
|
DWC->setPin(BIN2pin, 0);
|
|
}
|
|
|
|
return currentstep;
|
|
}
|
|
|