lib: Add rp2350 files to pico-sdk

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor
2024-10-25 14:08:46 -04:00
parent 2ad0b1afc2
commit f00919070e
107 changed files with 128556 additions and 0 deletions

View File

@@ -0,0 +1,519 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_ACCESSCTRL_H
#define _HARDWARE_STRUCTS_ACCESSCTRL_H
/**
* \file rp2350/accessctrl.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/accessctrl.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_accessctrl
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/accessctrl.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(ACCESSCTRL_LOCK_OFFSET) // ACCESSCTRL_LOCK
// Once a LOCK bit is written to 1, ACCESSCTRL silently ignores writes from that master
// 0x00000008 [3] DEBUG (0)
// 0x00000004 [2] DMA (1)
// 0x00000002 [1] CORE1 (0)
// 0x00000001 [0] CORE0 (0)
io_rw_32 lock;
_REG_(ACCESSCTRL_FORCE_CORE_NS_OFFSET) // ACCESSCTRL_FORCE_CORE_NS
// Force core 1's bus accesses to always be Non-secure, no matter the core's internal state
// 0x00000002 [1] CORE1 (0)
io_rw_32 force_core_ns;
_REG_(ACCESSCTRL_CFGRESET_OFFSET) // ACCESSCTRL_CFGRESET
// Write 1 to reset all ACCESSCTRL configuration, except for the LOCK and FORCE_CORE_NS registers
// 0x00000001 [0] CFGRESET (0)
io_wo_32 cfgreset;
// (Description copied from array index 0 register ACCESSCTRL_GPIO_NSMASK0 applies similarly to other array indexes)
_REG_(ACCESSCTRL_GPIO_NSMASK0_OFFSET) // ACCESSCTRL_GPIO_NSMASK0
// Control whether GPIO0
// 0xffffffff [31:0] GPIO_NSMASK0 (0x00000000)
io_rw_32 gpio_nsmask[2];
_REG_(ACCESSCTRL_ROM_OFFSET) // ACCESSCTRL_ROM
// Control access to ROM. Defaults to fully open access.
// 0x00000080 [7] DBG (1) If 1, ROM can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, ROM can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, ROM can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, ROM can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, ROM can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, ROM can be accessed from a...
// 0x00000002 [1] NSP (1) If 1, ROM can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (1) If 1, and NSP is also set, ROM can be accessed from a...
io_rw_32 rom;
_REG_(ACCESSCTRL_XIP_MAIN_OFFSET) // ACCESSCTRL_XIP_MAIN
// Control access to XIP_MAIN. Defaults to fully open access.
// 0x00000080 [7] DBG (1) If 1, XIP_MAIN can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, XIP_MAIN can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, XIP_MAIN can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, XIP_MAIN can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, XIP_MAIN can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, XIP_MAIN can be accessed from...
// 0x00000002 [1] NSP (1) If 1, XIP_MAIN can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (1) If 1, and NSP is also set, XIP_MAIN can be accessed from...
io_rw_32 xip_main;
// (Description copied from array index 0 register ACCESSCTRL_SRAM0 applies similarly to other array indexes)
_REG_(ACCESSCTRL_SRAM0_OFFSET) // ACCESSCTRL_SRAM0
// Control access to SRAM0. Defaults to fully open access.
// 0x00000080 [7] DBG (1) If 1, SRAM0 can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, SRAM0 can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, SRAM0 can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, SRAM0 can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, SRAM0 can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, SRAM0 can be accessed from a...
// 0x00000002 [1] NSP (1) If 1, SRAM0 can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (1) If 1, and NSP is also set, SRAM0 can be accessed from a...
io_rw_32 sram[10];
_REG_(ACCESSCTRL_DMA_OFFSET) // ACCESSCTRL_DMA
// Control access to DMA. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, DMA can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, DMA can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, DMA can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, DMA can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, DMA can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, DMA can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, DMA can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, DMA can be accessed from a...
io_rw_32 dma;
_REG_(ACCESSCTRL_USBCTRL_OFFSET) // ACCESSCTRL_USBCTRL
// Control access to USBCTRL. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, USBCTRL can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, USBCTRL can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, USBCTRL can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, USBCTRL can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, USBCTRL can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, USBCTRL can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, USBCTRL can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, USBCTRL can be accessed from...
io_rw_32 usbctrl;
// (Description copied from array index 0 register ACCESSCTRL_PIO0 applies similarly to other array indexes)
_REG_(ACCESSCTRL_PIO0_OFFSET) // ACCESSCTRL_PIO0
// Control access to PIO0. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, PIO0 can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, PIO0 can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, PIO0 can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, PIO0 can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, PIO0 can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, PIO0 can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, PIO0 can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, PIO0 can be accessed from a...
io_rw_32 pio[3];
_REG_(ACCESSCTRL_CORESIGHT_TRACE_OFFSET) // ACCESSCTRL_CORESIGHT_TRACE
// Control access to CORESIGHT_TRACE. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, CORESIGHT_TRACE can be accessed by the debugger,...
// 0x00000040 [6] DMA (0) If 1, CORESIGHT_TRACE can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, CORESIGHT_TRACE can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, CORESIGHT_TRACE can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, CORESIGHT_TRACE can be accessed from a Secure,...
// 0x00000004 [2] SU (0) If 1, and SP is also set, CORESIGHT_TRACE can be...
// 0x00000002 [1] NSP (0) If 1, CORESIGHT_TRACE can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, CORESIGHT_TRACE can be...
io_rw_32 coresight_trace;
_REG_(ACCESSCTRL_CORESIGHT_PERIPH_OFFSET) // ACCESSCTRL_CORESIGHT_PERIPH
// Control access to CORESIGHT_PERIPH. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, CORESIGHT_PERIPH can be accessed by the debugger,...
// 0x00000040 [6] DMA (0) If 1, CORESIGHT_PERIPH can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, CORESIGHT_PERIPH can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, CORESIGHT_PERIPH can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, CORESIGHT_PERIPH can be accessed from a Secure,...
// 0x00000004 [2] SU (0) If 1, and SP is also set, CORESIGHT_PERIPH can be...
// 0x00000002 [1] NSP (0) If 1, CORESIGHT_PERIPH can be accessed from a...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, CORESIGHT_PERIPH can be...
io_rw_32 coresight_periph;
_REG_(ACCESSCTRL_SYSINFO_OFFSET) // ACCESSCTRL_SYSINFO
// Control access to SYSINFO. Defaults to fully open access.
// 0x00000080 [7] DBG (1) If 1, SYSINFO can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, SYSINFO can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, SYSINFO can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, SYSINFO can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, SYSINFO can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, SYSINFO can be accessed from a...
// 0x00000002 [1] NSP (1) If 1, SYSINFO can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (1) If 1, and NSP is also set, SYSINFO can be accessed from...
io_rw_32 sysinfo;
_REG_(ACCESSCTRL_RESETS_OFFSET) // ACCESSCTRL_RESETS
// Control access to RESETS. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, RESETS can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, RESETS can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, RESETS can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, RESETS can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, RESETS can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, RESETS can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, RESETS can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, RESETS can be accessed from a...
io_rw_32 resets;
// (Description copied from array index 0 register ACCESSCTRL_IO_BANK0 applies similarly to other array indexes)
_REG_(ACCESSCTRL_IO_BANK0_OFFSET) // ACCESSCTRL_IO_BANK0
// Control access to IO_BANK0. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, IO_BANK0 can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, IO_BANK0 can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, IO_BANK0 can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, IO_BANK0 can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, IO_BANK0 can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, IO_BANK0 can be accessed from...
// 0x00000002 [1] NSP (0) If 1, IO_BANK0 can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, IO_BANK0 can be accessed from...
io_rw_32 io_bank[2];
_REG_(ACCESSCTRL_PADS_BANK0_OFFSET) // ACCESSCTRL_PADS_BANK0
// Control access to PADS_BANK0. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, PADS_BANK0 can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, PADS_BANK0 can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, PADS_BANK0 can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, PADS_BANK0 can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, PADS_BANK0 can be accessed from a Secure,...
// 0x00000004 [2] SU (1) If 1, and SP is also set, PADS_BANK0 can be accessed...
// 0x00000002 [1] NSP (0) If 1, PADS_BANK0 can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, PADS_BANK0 can be accessed...
io_rw_32 pads_bank0;
_REG_(ACCESSCTRL_PADS_QSPI_OFFSET) // ACCESSCTRL_PADS_QSPI
// Control access to PADS_QSPI. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, PADS_QSPI can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, PADS_QSPI can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, PADS_QSPI can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, PADS_QSPI can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, PADS_QSPI can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, PADS_QSPI can be accessed from...
// 0x00000002 [1] NSP (0) If 1, PADS_QSPI can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, PADS_QSPI can be accessed...
io_rw_32 pads_qspi;
_REG_(ACCESSCTRL_BUSCTRL_OFFSET) // ACCESSCTRL_BUSCTRL
// Control access to BUSCTRL. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, BUSCTRL can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, BUSCTRL can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, BUSCTRL can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, BUSCTRL can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, BUSCTRL can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, BUSCTRL can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, BUSCTRL can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, BUSCTRL can be accessed from...
io_rw_32 busctrl;
_REG_(ACCESSCTRL_ADC0_OFFSET) // ACCESSCTRL_ADC0
// Control access to ADC0. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, ADC0 can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, ADC0 can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, ADC0 can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, ADC0 can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, ADC0 can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, ADC0 can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, ADC0 can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, ADC0 can be accessed from a...
io_rw_32 adc0;
_REG_(ACCESSCTRL_HSTX_OFFSET) // ACCESSCTRL_HSTX
// Control access to HSTX. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, HSTX can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, HSTX can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, HSTX can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, HSTX can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, HSTX can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, HSTX can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, HSTX can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, HSTX can be accessed from a...
io_rw_32 hstx;
// (Description copied from array index 0 register ACCESSCTRL_I2C0 applies similarly to other array indexes)
_REG_(ACCESSCTRL_I2C0_OFFSET) // ACCESSCTRL_I2C0
// Control access to I2C0. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, I2C0 can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, I2C0 can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, I2C0 can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, I2C0 can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, I2C0 can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, I2C0 can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, I2C0 can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, I2C0 can be accessed from a...
io_rw_32 i2c[2];
_REG_(ACCESSCTRL_PWM_OFFSET) // ACCESSCTRL_PWM
// Control access to PWM. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, PWM can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, PWM can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, PWM can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, PWM can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, PWM can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, PWM can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, PWM can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, PWM can be accessed from a...
io_rw_32 pwm;
// (Description copied from array index 0 register ACCESSCTRL_SPI0 applies similarly to other array indexes)
_REG_(ACCESSCTRL_SPI0_OFFSET) // ACCESSCTRL_SPI0
// Control access to SPI0. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, SPI0 can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, SPI0 can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, SPI0 can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, SPI0 can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, SPI0 can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, SPI0 can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, SPI0 can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, SPI0 can be accessed from a...
io_rw_32 spi[2];
// (Description copied from array index 0 register ACCESSCTRL_TIMER0 applies similarly to other array indexes)
_REG_(ACCESSCTRL_TIMER0_OFFSET) // ACCESSCTRL_TIMER0
// Control access to TIMER0. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, TIMER0 can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, TIMER0 can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, TIMER0 can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, TIMER0 can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, TIMER0 can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, TIMER0 can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, TIMER0 can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, TIMER0 can be accessed from a...
io_rw_32 timer[2];
// (Description copied from array index 0 register ACCESSCTRL_UART0 applies similarly to other array indexes)
_REG_(ACCESSCTRL_UART0_OFFSET) // ACCESSCTRL_UART0
// Control access to UART0. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, UART0 can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, UART0 can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, UART0 can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, UART0 can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, UART0 can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, UART0 can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, UART0 can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, UART0 can be accessed from a...
io_rw_32 uart[2];
_REG_(ACCESSCTRL_OTP_OFFSET) // ACCESSCTRL_OTP
// Control access to OTP. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, OTP can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, OTP can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, OTP can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, OTP can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, OTP can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, OTP can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, OTP can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, OTP can be accessed from a...
io_rw_32 otp;
_REG_(ACCESSCTRL_TBMAN_OFFSET) // ACCESSCTRL_TBMAN
// Control access to TBMAN. Defaults to Secure access from any master.
// 0x00000080 [7] DBG (1) If 1, TBMAN can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, TBMAN can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, TBMAN can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, TBMAN can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, TBMAN can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (1) If 1, and SP is also set, TBMAN can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, TBMAN can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, TBMAN can be accessed from a...
io_rw_32 tbman;
_REG_(ACCESSCTRL_POWMAN_OFFSET) // ACCESSCTRL_POWMAN
// Control access to POWMAN. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, POWMAN can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, POWMAN can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, POWMAN can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, POWMAN can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, POWMAN can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, POWMAN can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, POWMAN can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, POWMAN can be accessed from a...
io_rw_32 powman;
_REG_(ACCESSCTRL_TRNG_OFFSET) // ACCESSCTRL_TRNG
// Control access to TRNG. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, TRNG can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, TRNG can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, TRNG can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, TRNG can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, TRNG can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, TRNG can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, TRNG can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, TRNG can be accessed from a...
io_rw_32 trng;
_REG_(ACCESSCTRL_SHA256_OFFSET) // ACCESSCTRL_SHA256
// Control access to SHA256. Defaults to Secure, Privileged access only.
// 0x00000080 [7] DBG (1) If 1, SHA256 can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, SHA256 can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, SHA256 can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, SHA256 can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, SHA256 can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, SHA256 can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, SHA256 can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, SHA256 can be accessed from a...
io_rw_32 sha256;
_REG_(ACCESSCTRL_SYSCFG_OFFSET) // ACCESSCTRL_SYSCFG
// Control access to SYSCFG. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, SYSCFG can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, SYSCFG can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, SYSCFG can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, SYSCFG can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, SYSCFG can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, SYSCFG can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, SYSCFG can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, SYSCFG can be accessed from a...
io_rw_32 syscfg;
_REG_(ACCESSCTRL_CLOCKS_OFFSET) // ACCESSCTRL_CLOCKS
// Control access to CLOCKS. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, CLOCKS can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, CLOCKS can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, CLOCKS can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, CLOCKS can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, CLOCKS can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, CLOCKS can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, CLOCKS can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, CLOCKS can be accessed from a...
io_rw_32 clocks;
_REG_(ACCESSCTRL_XOSC_OFFSET) // ACCESSCTRL_XOSC
// Control access to XOSC. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, XOSC can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, XOSC can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, XOSC can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, XOSC can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, XOSC can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, XOSC can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, XOSC can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, XOSC can be accessed from a...
io_rw_32 xosc;
_REG_(ACCESSCTRL_ROSC_OFFSET) // ACCESSCTRL_ROSC
// Control access to ROSC. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, ROSC can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, ROSC can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, ROSC can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, ROSC can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, ROSC can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, ROSC can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, ROSC can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, ROSC can be accessed from a...
io_rw_32 rosc;
_REG_(ACCESSCTRL_PLL_SYS_OFFSET) // ACCESSCTRL_PLL_SYS
// Control access to PLL_SYS. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, PLL_SYS can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, PLL_SYS can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, PLL_SYS can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, PLL_SYS can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, PLL_SYS can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, PLL_SYS can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, PLL_SYS can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, PLL_SYS can be accessed from...
io_rw_32 pll_sys;
_REG_(ACCESSCTRL_PLL_USB_OFFSET) // ACCESSCTRL_PLL_USB
// Control access to PLL_USB. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, PLL_USB can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, PLL_USB can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, PLL_USB can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, PLL_USB can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, PLL_USB can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, PLL_USB can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, PLL_USB can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, PLL_USB can be accessed from...
io_rw_32 pll_usb;
_REG_(ACCESSCTRL_TICKS_OFFSET) // ACCESSCTRL_TICKS
// Control access to TICKS. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, TICKS can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, TICKS can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, TICKS can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, TICKS can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, TICKS can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, TICKS can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, TICKS can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, TICKS can be accessed from a...
io_rw_32 ticks;
_REG_(ACCESSCTRL_WATCHDOG_OFFSET) // ACCESSCTRL_WATCHDOG
// Control access to WATCHDOG. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, WATCHDOG can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, WATCHDOG can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, WATCHDOG can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, WATCHDOG can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, WATCHDOG can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, WATCHDOG can be accessed from...
// 0x00000002 [1] NSP (0) If 1, WATCHDOG can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, WATCHDOG can be accessed from...
io_rw_32 watchdog;
_REG_(ACCESSCTRL_RSM_OFFSET) // ACCESSCTRL_RSM
// Control access to RSM. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, RSM can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, RSM can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, RSM can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, RSM can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, RSM can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, RSM can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, RSM can be accessed from a Non-secure, Privileged context
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, RSM can be accessed from a...
io_rw_32 rsm;
_REG_(ACCESSCTRL_XIP_CTRL_OFFSET) // ACCESSCTRL_XIP_CTRL
// Control access to XIP_CTRL. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, XIP_CTRL can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, XIP_CTRL can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, XIP_CTRL can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, XIP_CTRL can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, XIP_CTRL can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, XIP_CTRL can be accessed from...
// 0x00000002 [1] NSP (0) If 1, XIP_CTRL can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, XIP_CTRL can be accessed from...
io_rw_32 xip_ctrl;
_REG_(ACCESSCTRL_XIP_QMI_OFFSET) // ACCESSCTRL_XIP_QMI
// Control access to XIP_QMI. Defaults to Secure, Privileged processor or debug access only.
// 0x00000080 [7] DBG (1) If 1, XIP_QMI can be accessed by the debugger, at...
// 0x00000040 [6] DMA (0) If 1, XIP_QMI can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, XIP_QMI can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, XIP_QMI can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, XIP_QMI can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, XIP_QMI can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, XIP_QMI can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, XIP_QMI can be accessed from...
io_rw_32 xip_qmi;
_REG_(ACCESSCTRL_XIP_AUX_OFFSET) // ACCESSCTRL_XIP_AUX
// Control access to XIP_AUX. Defaults to Secure, Privileged access only.
// 0x00000080 [7] DBG (1) If 1, XIP_AUX can be accessed by the debugger, at...
// 0x00000040 [6] DMA (1) If 1, XIP_AUX can be accessed by the DMA, at...
// 0x00000020 [5] CORE1 (1) If 1, XIP_AUX can be accessed by core 1, at...
// 0x00000010 [4] CORE0 (1) If 1, XIP_AUX can be accessed by core 0, at...
// 0x00000008 [3] SP (1) If 1, XIP_AUX can be accessed from a Secure, Privileged context
// 0x00000004 [2] SU (0) If 1, and SP is also set, XIP_AUX can be accessed from a...
// 0x00000002 [1] NSP (0) If 1, XIP_AUX can be accessed from a Non-secure,...
// 0x00000001 [0] NSU (0) If 1, and NSP is also set, XIP_AUX can be accessed from...
io_rw_32 xip_aux;
} accessctrl_hw_t;
#define accessctrl_hw ((accessctrl_hw_t *)ACCESSCTRL_BASE)
static_assert(sizeof (accessctrl_hw_t) == 0x00ec, "");
#endif // _HARDWARE_STRUCTS_ACCESSCTRL_H

View File

@@ -0,0 +1,96 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_ADC_H
#define _HARDWARE_STRUCTS_ADC_H
/**
* \file rp2350/adc.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/adc.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_adc
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/adc.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(ADC_CS_OFFSET) // ADC_CS
// ADC Control and Status
// 0x01ff0000 [24:16] RROBIN (0x000) Round-robin sampling
// 0x0000f000 [15:12] AINSEL (0x0) Select analog mux input
// 0x00000400 [10] ERR_STICKY (0) Some past ADC conversion encountered an error
// 0x00000200 [9] ERR (0) The most recent ADC conversion encountered an error;...
// 0x00000100 [8] READY (0) 1 if the ADC is ready to start a new conversion
// 0x00000008 [3] START_MANY (0) Continuously perform conversions whilst this bit is 1
// 0x00000004 [2] START_ONCE (0) Start a single conversion
// 0x00000002 [1] TS_EN (0) Power on temperature sensor
// 0x00000001 [0] EN (0) Power on ADC and enable its clock
io_rw_32 cs;
_REG_(ADC_RESULT_OFFSET) // ADC_RESULT
// Result of most recent ADC conversion
// 0x00000fff [11:0] RESULT (0x000)
io_ro_32 result;
_REG_(ADC_FCS_OFFSET) // ADC_FCS
// FIFO control and status
// 0x0f000000 [27:24] THRESH (0x0) DREQ/IRQ asserted when level >= threshold
// 0x000f0000 [19:16] LEVEL (0x0) The number of conversion results currently waiting in the FIFO
// 0x00000800 [11] OVER (0) 1 if the FIFO has been overflowed
// 0x00000400 [10] UNDER (0) 1 if the FIFO has been underflowed
// 0x00000200 [9] FULL (0)
// 0x00000100 [8] EMPTY (0)
// 0x00000008 [3] DREQ_EN (0) If 1: assert DMA requests when FIFO contains data
// 0x00000004 [2] ERR (0) If 1: conversion error bit appears in the FIFO alongside...
// 0x00000002 [1] SHIFT (0) If 1: FIFO results are right-shifted to be one byte in size
// 0x00000001 [0] EN (0) If 1: write result to the FIFO after each conversion
io_rw_32 fcs;
_REG_(ADC_FIFO_OFFSET) // ADC_FIFO
// Conversion result FIFO
// 0x00008000 [15] ERR (-) 1 if this particular sample experienced a conversion error
// 0x00000fff [11:0] VAL (-)
io_ro_32 fifo;
_REG_(ADC_DIV_OFFSET) // ADC_DIV
// Clock divider
// 0x00ffff00 [23:8] INT (0x0000) Integer part of clock divisor
// 0x000000ff [7:0] FRAC (0x00) Fractional part of clock divisor
io_rw_32 div;
_REG_(ADC_INTR_OFFSET) // ADC_INTR
// Raw Interrupts
// 0x00000001 [0] FIFO (0) Triggered when the sample FIFO reaches a certain level
io_ro_32 intr;
_REG_(ADC_INTE_OFFSET) // ADC_INTE
// Interrupt Enable
// 0x00000001 [0] FIFO (0) Triggered when the sample FIFO reaches a certain level
io_rw_32 inte;
_REG_(ADC_INTF_OFFSET) // ADC_INTF
// Interrupt Force
// 0x00000001 [0] FIFO (0) Triggered when the sample FIFO reaches a certain level
io_rw_32 intf;
_REG_(ADC_INTS_OFFSET) // ADC_INTS
// Interrupt status after masking & forcing
// 0x00000001 [0] FIFO (0) Triggered when the sample FIFO reaches a certain level
io_ro_32 ints;
} adc_hw_t;
#define adc_hw ((adc_hw_t *)ADC_BASE)
static_assert(sizeof (adc_hw_t) == 0x0024, "");
#endif // _HARDWARE_STRUCTS_ADC_H

View File

@@ -0,0 +1,49 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_BOOTRAM_H
#define _HARDWARE_STRUCTS_BOOTRAM_H
/**
* \file rp2350/bootram.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/bootram.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_bootram
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/bootram.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
// (Description copied from array index 0 register BOOTRAM_WRITE_ONCE0 applies similarly to other array indexes)
_REG_(BOOTRAM_WRITE_ONCE0_OFFSET) // BOOTRAM_WRITE_ONCE0
// This registers always ORs writes into its current contents
// 0xffffffff [31:0] WRITE_ONCE0 (0x00000000)
io_rw_32 write_once[2];
_REG_(BOOTRAM_BOOTLOCK_STAT_OFFSET) // BOOTRAM_BOOTLOCK_STAT
// Bootlock status register
// 0x000000ff [7:0] BOOTLOCK_STAT (0xff)
io_rw_32 bootlock_stat;
// (Description copied from array index 0 register BOOTRAM_BOOTLOCK0 applies similarly to other array indexes)
_REG_(BOOTRAM_BOOTLOCK0_OFFSET) // BOOTRAM_BOOTLOCK0
// Read to claim and check
// 0xffffffff [31:0] BOOTLOCK0 (0x00000000)
io_rw_32 bootlock[8];
} bootram_hw_t;
#define bootram_hw ((bootram_hw_t *)(BOOTRAM_BASE + BOOTRAM_WRITE_ONCE0_OFFSET))
static_assert(sizeof (bootram_hw_t) == 0x002c, "");
#endif // _HARDWARE_STRUCTS_BOOTRAM_H

View File

@@ -0,0 +1,9 @@
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
// Support old header for compatibility (and if included, support old variable name)
#include "hardware/structs/busctrl.h"
#define bus_ctrl_hw busctrl_hw

View File

@@ -0,0 +1,90 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_BUSCTRL_H
#define _HARDWARE_STRUCTS_BUSCTRL_H
/**
* \file rp2350/busctrl.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/busctrl.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_busctrl
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/busctrl.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
/** \brief Bus fabric performance counters on RP2350 (used as typedef \ref bus_ctrl_perf_counter_t)
* \ingroup hardware_busctrl
*/
typedef enum bus_ctrl_perf_counter_rp2350 {
arbiter_rom_perf_event_access = 19,
arbiter_rom_perf_event_access_contested = 18,
arbiter_xip_main_perf_event_access = 17,
arbiter_xip_main_perf_event_access_contested = 16,
arbiter_sram0_perf_event_access = 15,
arbiter_sram0_perf_event_access_contested = 14,
arbiter_sram1_perf_event_access = 13,
arbiter_sram1_perf_event_access_contested = 12,
arbiter_sram2_perf_event_access = 11,
arbiter_sram2_perf_event_access_contested = 10,
arbiter_sram3_perf_event_access = 9,
arbiter_sram3_perf_event_access_contested = 8,
arbiter_sram4_perf_event_access = 7,
arbiter_sram4_perf_event_access_contested = 6,
arbiter_sram5_perf_event_access = 5,
arbiter_sram5_perf_event_access_contested = 4,
arbiter_fastperi_perf_event_access = 3,
arbiter_fastperi_perf_event_access_contested = 2,
arbiter_apb_perf_event_access = 1,
arbiter_apb_perf_event_access_contested = 0
} bus_ctrl_perf_counter_t;
typedef struct {
_REG_(BUSCTRL_PERFCTR0_OFFSET) // BUSCTRL_PERFCTR0
// Bus fabric performance counter 0
// 0x00ffffff [23:0] PERFCTR0 (0x000000) Busfabric saturating performance counter 0 +
io_rw_32 value;
_REG_(BUSCTRL_PERFSEL0_OFFSET) // BUSCTRL_PERFSEL0
// Bus fabric performance event select for PERFCTR0
// 0x0000007f [6:0] PERFSEL0 (0x1f) Select an event for PERFCTR0
io_rw_32 sel;
} bus_ctrl_perf_hw_t;
typedef struct {
_REG_(BUSCTRL_BUS_PRIORITY_OFFSET) // BUSCTRL_BUS_PRIORITY
// Set the priority of each master for bus arbitration
// 0x00001000 [12] DMA_W (0) 0 - low priority, 1 - high priority
// 0x00000100 [8] DMA_R (0) 0 - low priority, 1 - high priority
// 0x00000010 [4] PROC1 (0) 0 - low priority, 1 - high priority
// 0x00000001 [0] PROC0 (0) 0 - low priority, 1 - high priority
io_rw_32 priority;
_REG_(BUSCTRL_BUS_PRIORITY_ACK_OFFSET) // BUSCTRL_BUS_PRIORITY_ACK
// Bus priority acknowledge
// 0x00000001 [0] BUS_PRIORITY_ACK (0) Goes to 1 once all arbiters have registered the new...
io_ro_32 priority_ack;
_REG_(BUSCTRL_PERFCTR_EN_OFFSET) // BUSCTRL_PERFCTR_EN
// Enable the performance counters
// 0x00000001 [0] PERFCTR_EN (0)
io_rw_32 perfctr_en;
bus_ctrl_perf_hw_t counter[4];
} busctrl_hw_t;
#define busctrl_hw ((busctrl_hw_t *)BUSCTRL_BASE)
static_assert(sizeof (busctrl_hw_t) == 0x002c, "");
#endif // _HARDWARE_STRUCTS_BUSCTRL_H

View File

@@ -0,0 +1,580 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_CLOCKS_H
#define _HARDWARE_STRUCTS_CLOCKS_H
/**
* \file rp2350/clocks.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/clocks.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_clocks
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/clocks.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
/** \brief Clock numbers on RP2350 (used as typedef \ref clock_num_t)
* \ingroup hardware_clocks
*/
/// \tag::clkenum[]
typedef enum clock_num_rp2350 {
clk_gpout0 = 0, ///< Select CLK_GPOUT0 as clock source
clk_gpout1 = 1, ///< Select CLK_GPOUT1 as clock source
clk_gpout2 = 2, ///< Select CLK_GPOUT2 as clock source
clk_gpout3 = 3, ///< Select CLK_GPOUT3 as clock source
clk_ref = 4, ///< Select CLK_REF as clock source
clk_sys = 5, ///< Select CLK_SYS as clock source
clk_peri = 6, ///< Select CLK_PERI as clock source
clk_hstx = 7, ///< Select CLK_HSTX as clock source
clk_usb = 8, ///< Select CLK_USB as clock source
clk_adc = 9, ///< Select CLK_ADC as clock source
CLK_COUNT
} clock_num_t;
/// \end::clkenum[]
/** \brief Clock destination numbers on RP2350 (used as typedef \ref clock_dest_num_t)
* \ingroup hardware_clocks
*/
typedef enum clock_dest_num_rp2350 {
CLK_DEST_SYS_CLOCKS = 0, ///< Select SYS_CLOCKS as clock destination
CLK_DEST_SYS_ACCESSCTRL = 1, ///< Select SYS_ACCESSCTRL as clock destination
CLK_DEST_ADC = 2, ///< Select ADC as clock destination
CLK_DEST_SYS_ADC = 3, ///< Select SYS_ADC as clock destination
CLK_DEST_SYS_BOOTRAM = 4, ///< Select SYS_BOOTRAM as clock destination
CLK_DEST_SYS_BUSCTRL = 5, ///< Select SYS_BUSCTRL as clock destination
CLK_DEST_SYS_BUSFABRIC = 6, ///< Select SYS_BUSFABRIC as clock destination
CLK_DEST_SYS_DMA = 7, ///< Select SYS_DMA as clock destination
CLK_DEST_SYS_GLITCH_DETECTOR = 8, ///< Select SYS_GLITCH_DETECTOR as clock destination
CLK_DEST_HSTX = 9, ///< Select HSTX as clock destination
CLK_DEST_SYS_HSTX = 10, ///< Select SYS_HSTX as clock destination
CLK_DEST_SYS_I2C0 = 11, ///< Select SYS_I2C0 as clock destination
CLK_DEST_SYS_I2C1 = 12, ///< Select SYS_I2C1 as clock destination
CLK_DEST_SYS_IO = 13, ///< Select SYS_IO as clock destination
CLK_DEST_SYS_JTAG = 14, ///< Select SYS_JTAG as clock destination
CLK_DEST_REF_OTP = 15, ///< Select REF_OTP as clock destination
CLK_DEST_SYS_OTP = 16, ///< Select SYS_OTP as clock destination
CLK_DEST_SYS_PADS = 17, ///< Select SYS_PADS as clock destination
CLK_DEST_SYS_PIO0 = 18, ///< Select SYS_PIO0 as clock destination
CLK_DEST_SYS_PIO1 = 19, ///< Select SYS_PIO1 as clock destination
CLK_DEST_SYS_PIO2 = 20, ///< Select SYS_PIO2 as clock destination
CLK_DEST_SYS_PLL_SYS = 21, ///< Select SYS_PLL_SYS as clock destination
CLK_DEST_SYS_PLL_USB = 22, ///< Select SYS_PLL_USB as clock destination
CLK_DEST_REF_POWMAN = 23, ///< Select REF_POWMAN as clock destination
CLK_DEST_SYS_POWMAN = 24, ///< Select SYS_POWMAN as clock destination
CLK_DEST_SYS_PWM = 25, ///< Select SYS_PWM as clock destination
CLK_DEST_SYS_RESETS = 26, ///< Select SYS_RESETS as clock destination
CLK_DEST_SYS_ROM = 27, ///< Select SYS_ROM as clock destination
CLK_DEST_SYS_ROSC = 28, ///< Select SYS_ROSC as clock destination
CLK_DEST_SYS_PSM = 29, ///< Select SYS_PSM as clock destination
CLK_DEST_SYS_SHA256 = 30, ///< Select SYS_SHA256 as clock destination
CLK_DEST_SYS_SIO = 31, ///< Select SYS_SIO as clock destination
CLK_DEST_PERI_SPI0 = 32, ///< Select PERI_SPI0 as clock destination
CLK_DEST_SYS_SPI0 = 33, ///< Select SYS_SPI0 as clock destination
CLK_DEST_PERI_SPI1 = 34, ///< Select PERI_SPI1 as clock destination
CLK_DEST_SYS_SPI1 = 35, ///< Select SYS_SPI1 as clock destination
CLK_DEST_SYS_SRAM0 = 36, ///< Select SYS_SRAM0 as clock destination
CLK_DEST_SYS_SRAM1 = 37, ///< Select SYS_SRAM1 as clock destination
CLK_DEST_SYS_SRAM2 = 38, ///< Select SYS_SRAM2 as clock destination
CLK_DEST_SYS_SRAM3 = 39, ///< Select SYS_SRAM3 as clock destination
CLK_DEST_SYS_SRAM4 = 40, ///< Select SYS_SRAM4 as clock destination
CLK_DEST_SYS_SRAM5 = 41, ///< Select SYS_SRAM5 as clock destination
CLK_DEST_SYS_SRAM6 = 42, ///< Select SYS_SRAM6 as clock destination
CLK_DEST_SYS_SRAM7 = 43, ///< Select SYS_SRAM7 as clock destination
CLK_DEST_SYS_SRAM8 = 44, ///< Select SYS_SRAM8 as clock destination
CLK_DEST_SYS_SRAM9 = 45, ///< Select SYS_SRAM9 as clock destination
CLK_DEST_SYS_SYSCFG = 46, ///< Select SYS_SYSCFG as clock destination
CLK_DEST_SYS_SYSINFO = 47, ///< Select SYS_SYSINFO as clock destination
CLK_DEST_SYS_TBMAN = 48, ///< Select SYS_TBMAN as clock destination
CLK_DEST_REF_TICKS = 49, ///< Select REF_TICKS as clock destination
CLK_DEST_SYS_TICKS = 50, ///< Select SYS_TICKS as clock destination
CLK_DEST_SYS_TIMER0 = 51, ///< Select SYS_TIMER0 as clock destination
CLK_DEST_SYS_TIMER1 = 52, ///< Select SYS_TIMER1 as clock destination
CLK_DEST_SYS_TRNG = 53, ///< Select SYS_TRNG as clock destination
CLK_DEST_PERI_UART0 = 54, ///< Select PERI_UART0 as clock destination
CLK_DEST_SYS_UART0 = 55, ///< Select SYS_UART0 as clock destination
CLK_DEST_PERI_UART1 = 56, ///< Select PERI_UART1 as clock destination
CLK_DEST_SYS_UART1 = 57, ///< Select SYS_UART1 as clock destination
CLK_DEST_SYS_USBCTRL = 58, ///< Select SYS_USBCTRL as clock destination
CLK_DEST_USB = 59, ///< Select USB as clock destination
CLK_DEST_SYS_WATCHDOG = 60, ///< Select SYS_WATCHDOG as clock destination
CLK_DEST_SYS_XIP = 61, ///< Select SYS_XIP as clock destination
CLK_DEST_SYS_XOSC = 62, ///< Select SYS_XOSC as clock destination
NUM_CLOCK_DESTINATIONS
} clock_dest_num_t;
/// \tag::clock_hw[]
typedef struct {
_REG_(CLOCKS_CLK_GPOUT0_CTRL_OFFSET) // CLOCKS_CLK_GPOUT0_CTRL
// Clock control, can be changed on-the-fly (except for auxsrc)
// 0x10000000 [28] ENABLED (0) clock generator is enabled
// 0x00100000 [20] NUDGE (0) An edge on this signal shifts the phase of the output by...
// 0x00030000 [17:16] PHASE (0x0) This delays the enable signal by up to 3 cycles of the...
// 0x00001000 [12] DC50 (0) Enables duty cycle correction for odd divisors, can be...
// 0x00000800 [11] ENABLE (0) Starts and stops the clock generator cleanly
// 0x00000400 [10] KILL (0) Asynchronously kills the clock generator, enable must be...
// 0x000001e0 [8:5] AUXSRC (0x0) Selects the auxiliary clock source, will glitch when switching
io_rw_32 ctrl;
_REG_(CLOCKS_CLK_GPOUT0_DIV_OFFSET) // CLOCKS_CLK_GPOUT0_DIV
// 0xffff0000 [31:16] INT (0x0001) Integer part of clock divisor, 0 -> max+1, can be...
// 0x0000ffff [15:0] FRAC (0x0000) Fractional component of the divisor, can be changed on-the-fly
io_rw_32 div;
_REG_(CLOCKS_CLK_GPOUT0_SELECTED_OFFSET) // CLOCKS_CLK_GPOUT0_SELECTED
// Indicates which src is currently selected (one-hot)
// 0x00000001 [0] CLK_GPOUT0_SELECTED (1) This slice does not have a glitchless mux (only the...
io_ro_32 selected;
} clock_hw_t;
/// \end::clock_hw[]
typedef struct {
_REG_(CLOCKS_CLK_SYS_RESUS_CTRL_OFFSET) // CLOCKS_CLK_SYS_RESUS_CTRL
// 0x00010000 [16] CLEAR (0) For clearing the resus after the fault that triggered it...
// 0x00001000 [12] FRCE (0) Force a resus, for test purposes only
// 0x00000100 [8] ENABLE (0) Enable resus
// 0x000000ff [7:0] TIMEOUT (0xff) This is expressed as a number of clk_ref cycles +
io_rw_32 ctrl;
_REG_(CLOCKS_CLK_SYS_RESUS_STATUS_OFFSET) // CLOCKS_CLK_SYS_RESUS_STATUS
// 0x00000001 [0] RESUSSED (0) Clock has been resuscitated, correct the error then send...
io_ro_32 status;
} clock_resus_hw_t;
typedef struct {
_REG_(CLOCKS_FC0_REF_KHZ_OFFSET) // CLOCKS_FC0_REF_KHZ
// Reference clock frequency in kHz
// 0x000fffff [19:0] FC0_REF_KHZ (0x00000)
io_rw_32 ref_khz;
_REG_(CLOCKS_FC0_MIN_KHZ_OFFSET) // CLOCKS_FC0_MIN_KHZ
// Minimum pass frequency in kHz
// 0x01ffffff [24:0] FC0_MIN_KHZ (0x0000000)
io_rw_32 min_khz;
_REG_(CLOCKS_FC0_MAX_KHZ_OFFSET) // CLOCKS_FC0_MAX_KHZ
// Maximum pass frequency in kHz
// 0x01ffffff [24:0] FC0_MAX_KHZ (0x1ffffff)
io_rw_32 max_khz;
_REG_(CLOCKS_FC0_DELAY_OFFSET) // CLOCKS_FC0_DELAY
// Delays the start of frequency counting to allow the mux to settle +
// 0x00000007 [2:0] FC0_DELAY (0x1)
io_rw_32 delay;
_REG_(CLOCKS_FC0_INTERVAL_OFFSET) // CLOCKS_FC0_INTERVAL
// The test interval is 0
// 0x0000000f [3:0] FC0_INTERVAL (0x8)
io_rw_32 interval;
_REG_(CLOCKS_FC0_SRC_OFFSET) // CLOCKS_FC0_SRC
// Clock sent to frequency counter, set to 0 when not required +
// 0x000000ff [7:0] FC0_SRC (0x00)
io_rw_32 src;
_REG_(CLOCKS_FC0_STATUS_OFFSET) // CLOCKS_FC0_STATUS
// Frequency counter status
// 0x10000000 [28] DIED (0) Test clock stopped during test
// 0x01000000 [24] FAST (0) Test clock faster than expected, only valid when status_done=1
// 0x00100000 [20] SLOW (0) Test clock slower than expected, only valid when status_done=1
// 0x00010000 [16] FAIL (0) Test failed
// 0x00001000 [12] WAITING (0) Waiting for test clock to start
// 0x00000100 [8] RUNNING (0) Test running
// 0x00000010 [4] DONE (0) Test complete
// 0x00000001 [0] PASS (0) Test passed
io_ro_32 status;
_REG_(CLOCKS_FC0_RESULT_OFFSET) // CLOCKS_FC0_RESULT
// Result of frequency measurement, only valid when status_done=1
// 0x3fffffe0 [29:5] KHZ (0x0000000)
// 0x0000001f [4:0] FRAC (0x00)
io_ro_32 result;
} fc_hw_t;
typedef struct {
clock_hw_t clk[10];
_REG_(CLOCKS_DFTCLK_XOSC_CTRL_OFFSET) // CLOCKS_DFTCLK_XOSC_CTRL
// 0x00000003 [1:0] SRC (0x0)
io_rw_32 dftclk_xosc_ctrl;
_REG_(CLOCKS_DFTCLK_ROSC_CTRL_OFFSET) // CLOCKS_DFTCLK_ROSC_CTRL
// 0x00000003 [1:0] SRC (0x0)
io_rw_32 dftclk_rosc_ctrl;
_REG_(CLOCKS_DFTCLK_LPOSC_CTRL_OFFSET) // CLOCKS_DFTCLK_LPOSC_CTRL
// 0x00000003 [1:0] SRC (0x0)
io_rw_32 dftclk_lposc_ctrl;
clock_resus_hw_t resus;
fc_hw_t fc0;
union {
struct {
_REG_(CLOCKS_WAKE_EN0_OFFSET) // CLOCKS_WAKE_EN0
// enable clock in wake mode
// 0x80000000 [31] CLK_SYS_SIOB (1)
// 0x40000000 [30] CLK_SYS_SHA256 (1)
// 0x20000000 [29] CLK_SYS_RSM (1)
// 0x10000000 [28] CLK_SYS_ROSC (1)
// 0x08000000 [27] CLK_SYS_ROM (1)
// 0x04000000 [26] CLK_SYS_RESETS (1)
// 0x02000000 [25] CLK_SYS_PWM (1)
// 0x01000000 [24] CLK_SYS_POWMAN (1)
// 0x00800000 [23] CLK_REF_POWMAN (1)
// 0x00400000 [22] CLK_SYS_PLL_USB (1)
// 0x00200000 [21] CLK_SYS_PLL_SYS (1)
// 0x00100000 [20] CLK_SYS_PIO2 (1)
// 0x00080000 [19] CLK_SYS_PIO1 (1)
// 0x00040000 [18] CLK_SYS_PIO0 (1)
// 0x00020000 [17] CLK_SYS_PADS (1)
// 0x00010000 [16] CLK_SYS_OTP (1)
// 0x00008000 [15] CLK_REF_OTP (1)
// 0x00004000 [14] CLK_SYS_JTAG (1)
// 0x00002000 [13] CLK_SYS_IO (1)
// 0x00001000 [12] CLK_SYS_I2C1 (1)
// 0x00000800 [11] CLK_SYS_I2C0 (1)
// 0x00000400 [10] CLK_SYS_HSTX (1)
// 0x00000200 [9] CLK_HSTX (1)
// 0x00000100 [8] CLK_SYS_GLITCH_DETECTOR (1)
// 0x00000080 [7] CLK_SYS_DMA (1)
// 0x00000040 [6] CLK_SYS_BUSFABRIC (1)
// 0x00000020 [5] CLK_SYS_BUSCTRL (1)
// 0x00000010 [4] CLK_SYS_BOOTRAM (1)
// 0x00000008 [3] CLK_SYS_ADC (1)
// 0x00000004 [2] CLK_ADC (1)
// 0x00000002 [1] CLK_SYS_ACCESSCTRL (1)
// 0x00000001 [0] CLK_SYS_CLOCKS (1)
io_rw_32 wake_en0;
_REG_(CLOCKS_WAKE_EN1_OFFSET) // CLOCKS_WAKE_EN1
// enable clock in wake mode
// 0x40000000 [30] CLK_SYS_XOSC (1)
// 0x20000000 [29] CLK_SYS_XIP (1)
// 0x10000000 [28] CLK_SYS_WATCHDOG (1)
// 0x08000000 [27] CLK_USB (1)
// 0x04000000 [26] CLK_SYS_USBCTRL (1)
// 0x02000000 [25] CLK_SYS_UART1 (1)
// 0x01000000 [24] CLK_PERI_UART1 (1)
// 0x00800000 [23] CLK_SYS_UART0 (1)
// 0x00400000 [22] CLK_PERI_UART0 (1)
// 0x00200000 [21] CLK_SYS_TRNG (1)
// 0x00100000 [20] CLK_SYS_TIMER1 (1)
// 0x00080000 [19] CLK_SYS_TIMER0 (1)
// 0x00040000 [18] CLK_SYS_TICKS (1)
// 0x00020000 [17] CLK_REF_TICKS (1)
// 0x00010000 [16] CLK_SYS_TBMAN (1)
// 0x00008000 [15] CLK_SYS_SYSINFO (1)
// 0x00004000 [14] CLK_SYS_SYSCFG (1)
// 0x00002000 [13] CLK_SYS_SRAM9 (1)
// 0x00001000 [12] CLK_SYS_SRAM8 (1)
// 0x00000800 [11] CLK_SYS_SRAM7 (1)
// 0x00000400 [10] CLK_SYS_SRAM6 (1)
// 0x00000200 [9] CLK_SYS_SRAM5 (1)
// 0x00000100 [8] CLK_SYS_SRAM4 (1)
// 0x00000080 [7] CLK_SYS_SRAM3 (1)
// 0x00000040 [6] CLK_SYS_SRAM2 (1)
// 0x00000020 [5] CLK_SYS_SRAM1 (1)
// 0x00000010 [4] CLK_SYS_SRAM0 (1)
// 0x00000008 [3] CLK_SYS_SPI1 (1)
// 0x00000004 [2] CLK_PERI_SPI1 (1)
// 0x00000002 [1] CLK_SYS_SPI0 (1)
// 0x00000001 [0] CLK_PERI_SPI0 (1)
io_rw_32 wake_en1;
};
// (Description copied from array index 0 register CLOCKS_WAKE_EN0 applies similarly to other array indexes)
_REG_(CLOCKS_WAKE_EN0_OFFSET) // CLOCKS_WAKE_EN0
// enable clock in wake mode
// 0x80000000 [31] CLK_SYS_SIO (1)
// 0x40000000 [30] CLK_SYS_SHA256 (1)
// 0x20000000 [29] CLK_SYS_PSM (1)
// 0x10000000 [28] CLK_SYS_ROSC (1)
// 0x08000000 [27] CLK_SYS_ROM (1)
// 0x04000000 [26] CLK_SYS_RESETS (1)
// 0x02000000 [25] CLK_SYS_PWM (1)
// 0x01000000 [24] CLK_SYS_POWMAN (1)
// 0x00800000 [23] CLK_REF_POWMAN (1)
// 0x00400000 [22] CLK_SYS_PLL_USB (1)
// 0x00200000 [21] CLK_SYS_PLL_SYS (1)
// 0x00100000 [20] CLK_SYS_PIO2 (1)
// 0x00080000 [19] CLK_SYS_PIO1 (1)
// 0x00040000 [18] CLK_SYS_PIO0 (1)
// 0x00020000 [17] CLK_SYS_PADS (1)
// 0x00010000 [16] CLK_SYS_OTP (1)
// 0x00008000 [15] CLK_REF_OTP (1)
// 0x00004000 [14] CLK_SYS_JTAG (1)
// 0x00002000 [13] CLK_SYS_IO (1)
// 0x00001000 [12] CLK_SYS_I2C1 (1)
// 0x00000800 [11] CLK_SYS_I2C0 (1)
// 0x00000400 [10] CLK_SYS_HSTX (1)
// 0x00000200 [9] CLK_HSTX (1)
// 0x00000100 [8] CLK_SYS_GLITCH_DETECTOR (1)
// 0x00000080 [7] CLK_SYS_DMA (1)
// 0x00000040 [6] CLK_SYS_BUSFABRIC (1)
// 0x00000020 [5] CLK_SYS_BUSCTRL (1)
// 0x00000010 [4] CLK_SYS_BOOTRAM (1)
// 0x00000008 [3] CLK_SYS_ADC (1)
// 0x00000004 [2] CLK_ADC (1)
// 0x00000002 [1] CLK_SYS_ACCESSCTRL (1)
// 0x00000001 [0] CLK_SYS_CLOCKS (1)
io_rw_32 wake_en[2];
};
union {
struct {
_REG_(CLOCKS_SLEEP_EN0_OFFSET) // CLOCKS_SLEEP_EN0
// enable clock in sleep mode
// 0x80000000 [31] CLK_SYS_SIOB (1)
// 0x40000000 [30] CLK_SYS_SHA256 (1)
// 0x20000000 [29] CLK_SYS_RSM (1)
// 0x10000000 [28] CLK_SYS_ROSC (1)
// 0x08000000 [27] CLK_SYS_ROM (1)
// 0x04000000 [26] CLK_SYS_RESETS (1)
// 0x02000000 [25] CLK_SYS_PWM (1)
// 0x01000000 [24] CLK_SYS_POWMAN (1)
// 0x00800000 [23] CLK_REF_POWMAN (1)
// 0x00400000 [22] CLK_SYS_PLL_USB (1)
// 0x00200000 [21] CLK_SYS_PLL_SYS (1)
// 0x00100000 [20] CLK_SYS_PIO2 (1)
// 0x00080000 [19] CLK_SYS_PIO1 (1)
// 0x00040000 [18] CLK_SYS_PIO0 (1)
// 0x00020000 [17] CLK_SYS_PADS (1)
// 0x00010000 [16] CLK_SYS_OTP (1)
// 0x00008000 [15] CLK_REF_OTP (1)
// 0x00004000 [14] CLK_SYS_JTAG (1)
// 0x00002000 [13] CLK_SYS_IO (1)
// 0x00001000 [12] CLK_SYS_I2C1 (1)
// 0x00000800 [11] CLK_SYS_I2C0 (1)
// 0x00000400 [10] CLK_SYS_HSTX (1)
// 0x00000200 [9] CLK_HSTX (1)
// 0x00000100 [8] CLK_SYS_GLITCH_DETECTOR (1)
// 0x00000080 [7] CLK_SYS_DMA (1)
// 0x00000040 [6] CLK_SYS_BUSFABRIC (1)
// 0x00000020 [5] CLK_SYS_BUSCTRL (1)
// 0x00000010 [4] CLK_SYS_BOOTRAM (1)
// 0x00000008 [3] CLK_SYS_ADC (1)
// 0x00000004 [2] CLK_ADC (1)
// 0x00000002 [1] CLK_SYS_ACCESSCTRL (1)
// 0x00000001 [0] CLK_SYS_CLOCKS (1)
io_rw_32 sleep_en0;
_REG_(CLOCKS_SLEEP_EN1_OFFSET) // CLOCKS_SLEEP_EN1
// enable clock in sleep mode
// 0x40000000 [30] CLK_SYS_XOSC (1)
// 0x20000000 [29] CLK_SYS_XIP (1)
// 0x10000000 [28] CLK_SYS_WATCHDOG (1)
// 0x08000000 [27] CLK_USB (1)
// 0x04000000 [26] CLK_SYS_USBCTRL (1)
// 0x02000000 [25] CLK_SYS_UART1 (1)
// 0x01000000 [24] CLK_PERI_UART1 (1)
// 0x00800000 [23] CLK_SYS_UART0 (1)
// 0x00400000 [22] CLK_PERI_UART0 (1)
// 0x00200000 [21] CLK_SYS_TRNG (1)
// 0x00100000 [20] CLK_SYS_TIMER1 (1)
// 0x00080000 [19] CLK_SYS_TIMER0 (1)
// 0x00040000 [18] CLK_SYS_TICKS (1)
// 0x00020000 [17] CLK_REF_TICKS (1)
// 0x00010000 [16] CLK_SYS_TBMAN (1)
// 0x00008000 [15] CLK_SYS_SYSINFO (1)
// 0x00004000 [14] CLK_SYS_SYSCFG (1)
// 0x00002000 [13] CLK_SYS_SRAM9 (1)
// 0x00001000 [12] CLK_SYS_SRAM8 (1)
// 0x00000800 [11] CLK_SYS_SRAM7 (1)
// 0x00000400 [10] CLK_SYS_SRAM6 (1)
// 0x00000200 [9] CLK_SYS_SRAM5 (1)
// 0x00000100 [8] CLK_SYS_SRAM4 (1)
// 0x00000080 [7] CLK_SYS_SRAM3 (1)
// 0x00000040 [6] CLK_SYS_SRAM2 (1)
// 0x00000020 [5] CLK_SYS_SRAM1 (1)
// 0x00000010 [4] CLK_SYS_SRAM0 (1)
// 0x00000008 [3] CLK_SYS_SPI1 (1)
// 0x00000004 [2] CLK_PERI_SPI1 (1)
// 0x00000002 [1] CLK_SYS_SPI0 (1)
// 0x00000001 [0] CLK_PERI_SPI0 (1)
io_rw_32 sleep_en1;
};
// (Description copied from array index 0 register CLOCKS_SLEEP_EN0 applies similarly to other array indexes)
_REG_(CLOCKS_SLEEP_EN0_OFFSET) // CLOCKS_SLEEP_EN0
// enable clock in sleep mode
// 0x80000000 [31] CLK_SYS_SIO (1)
// 0x40000000 [30] CLK_SYS_SHA256 (1)
// 0x20000000 [29] CLK_SYS_PSM (1)
// 0x10000000 [28] CLK_SYS_ROSC (1)
// 0x08000000 [27] CLK_SYS_ROM (1)
// 0x04000000 [26] CLK_SYS_RESETS (1)
// 0x02000000 [25] CLK_SYS_PWM (1)
// 0x01000000 [24] CLK_SYS_POWMAN (1)
// 0x00800000 [23] CLK_REF_POWMAN (1)
// 0x00400000 [22] CLK_SYS_PLL_USB (1)
// 0x00200000 [21] CLK_SYS_PLL_SYS (1)
// 0x00100000 [20] CLK_SYS_PIO2 (1)
// 0x00080000 [19] CLK_SYS_PIO1 (1)
// 0x00040000 [18] CLK_SYS_PIO0 (1)
// 0x00020000 [17] CLK_SYS_PADS (1)
// 0x00010000 [16] CLK_SYS_OTP (1)
// 0x00008000 [15] CLK_REF_OTP (1)
// 0x00004000 [14] CLK_SYS_JTAG (1)
// 0x00002000 [13] CLK_SYS_IO (1)
// 0x00001000 [12] CLK_SYS_I2C1 (1)
// 0x00000800 [11] CLK_SYS_I2C0 (1)
// 0x00000400 [10] CLK_SYS_HSTX (1)
// 0x00000200 [9] CLK_HSTX (1)
// 0x00000100 [8] CLK_SYS_GLITCH_DETECTOR (1)
// 0x00000080 [7] CLK_SYS_DMA (1)
// 0x00000040 [6] CLK_SYS_BUSFABRIC (1)
// 0x00000020 [5] CLK_SYS_BUSCTRL (1)
// 0x00000010 [4] CLK_SYS_BOOTRAM (1)
// 0x00000008 [3] CLK_SYS_ADC (1)
// 0x00000004 [2] CLK_ADC (1)
// 0x00000002 [1] CLK_SYS_ACCESSCTRL (1)
// 0x00000001 [0] CLK_SYS_CLOCKS (1)
io_rw_32 sleep_en[2];
};
union {
struct {
_REG_(CLOCKS_ENABLED0_OFFSET) // CLOCKS_ENABLED0
// indicates the state of the clock enable
// 0x80000000 [31] CLK_SYS_SIOB (0)
// 0x40000000 [30] CLK_SYS_SHA256 (0)
// 0x20000000 [29] CLK_SYS_RSM (0)
// 0x10000000 [28] CLK_SYS_ROSC (0)
// 0x08000000 [27] CLK_SYS_ROM (0)
// 0x04000000 [26] CLK_SYS_RESETS (0)
// 0x02000000 [25] CLK_SYS_PWM (0)
// 0x01000000 [24] CLK_SYS_POWMAN (0)
// 0x00800000 [23] CLK_REF_POWMAN (0)
// 0x00400000 [22] CLK_SYS_PLL_USB (0)
// 0x00200000 [21] CLK_SYS_PLL_SYS (0)
// 0x00100000 [20] CLK_SYS_PIO2 (0)
// 0x00080000 [19] CLK_SYS_PIO1 (0)
// 0x00040000 [18] CLK_SYS_PIO0 (0)
// 0x00020000 [17] CLK_SYS_PADS (0)
// 0x00010000 [16] CLK_SYS_OTP (0)
// 0x00008000 [15] CLK_REF_OTP (0)
// 0x00004000 [14] CLK_SYS_JTAG (0)
// 0x00002000 [13] CLK_SYS_IO (0)
// 0x00001000 [12] CLK_SYS_I2C1 (0)
// 0x00000800 [11] CLK_SYS_I2C0 (0)
// 0x00000400 [10] CLK_SYS_HSTX (0)
// 0x00000200 [9] CLK_HSTX (0)
// 0x00000100 [8] CLK_SYS_GLITCH_DETECTOR (0)
// 0x00000080 [7] CLK_SYS_DMA (0)
// 0x00000040 [6] CLK_SYS_BUSFABRIC (0)
// 0x00000020 [5] CLK_SYS_BUSCTRL (0)
// 0x00000010 [4] CLK_SYS_BOOTRAM (0)
// 0x00000008 [3] CLK_SYS_ADC (0)
// 0x00000004 [2] CLK_ADC (0)
// 0x00000002 [1] CLK_SYS_ACCESSCTRL (0)
// 0x00000001 [0] CLK_SYS_CLOCKS (0)
io_ro_32 enabled0;
_REG_(CLOCKS_ENABLED1_OFFSET) // CLOCKS_ENABLED1
// indicates the state of the clock enable
// 0x40000000 [30] CLK_SYS_XOSC (0)
// 0x20000000 [29] CLK_SYS_XIP (0)
// 0x10000000 [28] CLK_SYS_WATCHDOG (0)
// 0x08000000 [27] CLK_USB (0)
// 0x04000000 [26] CLK_SYS_USBCTRL (0)
// 0x02000000 [25] CLK_SYS_UART1 (0)
// 0x01000000 [24] CLK_PERI_UART1 (0)
// 0x00800000 [23] CLK_SYS_UART0 (0)
// 0x00400000 [22] CLK_PERI_UART0 (0)
// 0x00200000 [21] CLK_SYS_TRNG (0)
// 0x00100000 [20] CLK_SYS_TIMER1 (0)
// 0x00080000 [19] CLK_SYS_TIMER0 (0)
// 0x00040000 [18] CLK_SYS_TICKS (0)
// 0x00020000 [17] CLK_REF_TICKS (0)
// 0x00010000 [16] CLK_SYS_TBMAN (0)
// 0x00008000 [15] CLK_SYS_SYSINFO (0)
// 0x00004000 [14] CLK_SYS_SYSCFG (0)
// 0x00002000 [13] CLK_SYS_SRAM9 (0)
// 0x00001000 [12] CLK_SYS_SRAM8 (0)
// 0x00000800 [11] CLK_SYS_SRAM7 (0)
// 0x00000400 [10] CLK_SYS_SRAM6 (0)
// 0x00000200 [9] CLK_SYS_SRAM5 (0)
// 0x00000100 [8] CLK_SYS_SRAM4 (0)
// 0x00000080 [7] CLK_SYS_SRAM3 (0)
// 0x00000040 [6] CLK_SYS_SRAM2 (0)
// 0x00000020 [5] CLK_SYS_SRAM1 (0)
// 0x00000010 [4] CLK_SYS_SRAM0 (0)
// 0x00000008 [3] CLK_SYS_SPI1 (0)
// 0x00000004 [2] CLK_PERI_SPI1 (0)
// 0x00000002 [1] CLK_SYS_SPI0 (0)
// 0x00000001 [0] CLK_PERI_SPI0 (0)
io_ro_32 enabled1;
};
// (Description copied from array index 0 register CLOCKS_ENABLED0 applies similarly to other array indexes)
_REG_(CLOCKS_ENABLED0_OFFSET) // CLOCKS_ENABLED0
// indicates the state of the clock enable
// 0x80000000 [31] CLK_SYS_SIO (0)
// 0x40000000 [30] CLK_SYS_SHA256 (0)
// 0x20000000 [29] CLK_SYS_PSM (0)
// 0x10000000 [28] CLK_SYS_ROSC (0)
// 0x08000000 [27] CLK_SYS_ROM (0)
// 0x04000000 [26] CLK_SYS_RESETS (0)
// 0x02000000 [25] CLK_SYS_PWM (0)
// 0x01000000 [24] CLK_SYS_POWMAN (0)
// 0x00800000 [23] CLK_REF_POWMAN (0)
// 0x00400000 [22] CLK_SYS_PLL_USB (0)
// 0x00200000 [21] CLK_SYS_PLL_SYS (0)
// 0x00100000 [20] CLK_SYS_PIO2 (0)
// 0x00080000 [19] CLK_SYS_PIO1 (0)
// 0x00040000 [18] CLK_SYS_PIO0 (0)
// 0x00020000 [17] CLK_SYS_PADS (0)
// 0x00010000 [16] CLK_SYS_OTP (0)
// 0x00008000 [15] CLK_REF_OTP (0)
// 0x00004000 [14] CLK_SYS_JTAG (0)
// 0x00002000 [13] CLK_SYS_IO (0)
// 0x00001000 [12] CLK_SYS_I2C1 (0)
// 0x00000800 [11] CLK_SYS_I2C0 (0)
// 0x00000400 [10] CLK_SYS_HSTX (0)
// 0x00000200 [9] CLK_HSTX (0)
// 0x00000100 [8] CLK_SYS_GLITCH_DETECTOR (0)
// 0x00000080 [7] CLK_SYS_DMA (0)
// 0x00000040 [6] CLK_SYS_BUSFABRIC (0)
// 0x00000020 [5] CLK_SYS_BUSCTRL (0)
// 0x00000010 [4] CLK_SYS_BOOTRAM (0)
// 0x00000008 [3] CLK_SYS_ADC (0)
// 0x00000004 [2] CLK_ADC (0)
// 0x00000002 [1] CLK_SYS_ACCESSCTRL (0)
// 0x00000001 [0] CLK_SYS_CLOCKS (0)
io_ro_32 enabled[2];
};
_REG_(CLOCKS_INTR_OFFSET) // CLOCKS_INTR
// Raw Interrupts
// 0x00000001 [0] CLK_SYS_RESUS (0)
io_ro_32 intr;
_REG_(CLOCKS_INTE_OFFSET) // CLOCKS_INTE
// Interrupt Enable
// 0x00000001 [0] CLK_SYS_RESUS (0)
io_rw_32 inte;
_REG_(CLOCKS_INTF_OFFSET) // CLOCKS_INTF
// Interrupt Force
// 0x00000001 [0] CLK_SYS_RESUS (0)
io_rw_32 intf;
_REG_(CLOCKS_INTS_OFFSET) // CLOCKS_INTS
// Interrupt status after masking & forcing
// 0x00000001 [0] CLK_SYS_RESUS (0)
io_ro_32 ints;
} clocks_hw_t;
#define clocks_hw ((clocks_hw_t *)CLOCKS_BASE)
static_assert(sizeof (clocks_hw_t) == 0x00d4, "");
#endif // _HARDWARE_STRUCTS_CLOCKS_H

View File

@@ -0,0 +1,43 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_CORESIGHT_TRACE_H
#define _HARDWARE_STRUCTS_CORESIGHT_TRACE_H
/**
* \file rp2350/coresight_trace.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/coresight_trace.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_coresight_trace
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/coresight_trace.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(CORESIGHT_TRACE_CTRL_STATUS_OFFSET) // CORESIGHT_TRACE_CTRL_STATUS
// Control and status register
// 0x00000002 [1] TRACE_CAPTURE_FIFO_OVERFLOW (0) This status flag is set high when trace data has been...
// 0x00000001 [0] TRACE_CAPTURE_FIFO_FLUSH (1) Set to 1 to continuously hold the trace FIFO in a...
io_rw_32 ctrl_status;
_REG_(CORESIGHT_TRACE_TRACE_CAPTURE_FIFO_OFFSET) // CORESIGHT_TRACE_TRACE_CAPTURE_FIFO
// FIFO for trace data captured from the TPIU
// 0xffffffff [31:0] RDATA (0x00000000) Read from an 8 x 32-bit FIFO containing trace data...
io_ro_32 trace_capture_fifo;
} coresight_trace_hw_t;
#define coresight_trace_hw ((coresight_trace_hw_t *)CORESIGHT_TRACE_BASE)
static_assert(sizeof (coresight_trace_hw_t) == 0x0008, "");
#endif // _HARDWARE_STRUCTS_CORESIGHT_TRACE_H

View File

@@ -0,0 +1,336 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_DMA_H
#define _HARDWARE_STRUCTS_DMA_H
/**
* \file rp2350/dma.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/dma.h"
#include "hardware/structs/dma_debug.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_dma
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/dma.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(DMA_CH0_READ_ADDR_OFFSET) // DMA_CH0_READ_ADDR
// DMA Channel 0 Read Address pointer
// 0xffffffff [31:0] CH0_READ_ADDR (0x00000000) This register updates automatically each time a read completes
io_rw_32 read_addr;
_REG_(DMA_CH0_WRITE_ADDR_OFFSET) // DMA_CH0_WRITE_ADDR
// DMA Channel 0 Write Address pointer
// 0xffffffff [31:0] CH0_WRITE_ADDR (0x00000000) This register updates automatically each time a write completes
io_rw_32 write_addr;
_REG_(DMA_CH0_TRANS_COUNT_OFFSET) // DMA_CH0_TRANS_COUNT
// DMA Channel 0 Transfer Count
// 0xf0000000 [31:28] MODE (0x0) When MODE is 0x0, the transfer count decrements with...
// 0x0fffffff [27:0] COUNT (0x0000000) 28-bit transfer count (256 million transfers maximum)
io_rw_32 transfer_count;
_REG_(DMA_CH0_CTRL_TRIG_OFFSET) // DMA_CH0_CTRL_TRIG
// DMA Channel 0 Control and Status
// 0x80000000 [31] AHB_ERROR (0) Logical OR of the READ_ERROR and WRITE_ERROR flags
// 0x40000000 [30] READ_ERROR (0) If 1, the channel received a read bus error
// 0x20000000 [29] WRITE_ERROR (0) If 1, the channel received a write bus error
// 0x04000000 [26] BUSY (0) This flag goes high when the channel starts a new...
// 0x02000000 [25] SNIFF_EN (0) If 1, this channel's data transfers are visible to the...
// 0x01000000 [24] BSWAP (0) Apply byte-swap transformation to DMA data
// 0x00800000 [23] IRQ_QUIET (0) In QUIET mode, the channel does not generate IRQs at the...
// 0x007e0000 [22:17] TREQ_SEL (0x00) Select a Transfer Request signal
// 0x0001e000 [16:13] CHAIN_TO (0x0) When this channel completes, it will trigger the channel...
// 0x00001000 [12] RING_SEL (0) Select whether RING_SIZE applies to read or write addresses
// 0x00000f00 [11:8] RING_SIZE (0x0) Size of address wrap region
// 0x00000080 [7] INCR_WRITE_REV (0) If 1, and INCR_WRITE is 1, the write address is...
// 0x00000040 [6] INCR_WRITE (0) If 1, the write address increments with each transfer
// 0x00000020 [5] INCR_READ_REV (0) If 1, and INCR_READ is 1, the read address is...
// 0x00000010 [4] INCR_READ (0) If 1, the read address increments with each transfer
// 0x0000000c [3:2] DATA_SIZE (0x0) Set the size of each bus transfer (byte/halfword/word)
// 0x00000002 [1] HIGH_PRIORITY (0) HIGH_PRIORITY gives a channel preferential treatment in...
// 0x00000001 [0] EN (0) DMA Channel Enable
io_rw_32 ctrl_trig;
_REG_(DMA_CH0_AL1_CTRL_OFFSET) // DMA_CH0_AL1_CTRL
// Alias for channel 0 CTRL register
// 0xffffffff [31:0] CH0_AL1_CTRL (-)
io_rw_32 al1_ctrl;
_REG_(DMA_CH0_AL1_READ_ADDR_OFFSET) // DMA_CH0_AL1_READ_ADDR
// Alias for channel 0 READ_ADDR register
// 0xffffffff [31:0] CH0_AL1_READ_ADDR (-)
io_rw_32 al1_read_addr;
_REG_(DMA_CH0_AL1_WRITE_ADDR_OFFSET) // DMA_CH0_AL1_WRITE_ADDR
// Alias for channel 0 WRITE_ADDR register
// 0xffffffff [31:0] CH0_AL1_WRITE_ADDR (-)
io_rw_32 al1_write_addr;
_REG_(DMA_CH0_AL1_TRANS_COUNT_TRIG_OFFSET) // DMA_CH0_AL1_TRANS_COUNT_TRIG
// Alias for channel 0 TRANS_COUNT register +
// 0xffffffff [31:0] CH0_AL1_TRANS_COUNT_TRIG (-)
io_rw_32 al1_transfer_count_trig;
_REG_(DMA_CH0_AL2_CTRL_OFFSET) // DMA_CH0_AL2_CTRL
// Alias for channel 0 CTRL register
// 0xffffffff [31:0] CH0_AL2_CTRL (-)
io_rw_32 al2_ctrl;
_REG_(DMA_CH0_AL2_TRANS_COUNT_OFFSET) // DMA_CH0_AL2_TRANS_COUNT
// Alias for channel 0 TRANS_COUNT register
// 0xffffffff [31:0] CH0_AL2_TRANS_COUNT (-)
io_rw_32 al2_transfer_count;
_REG_(DMA_CH0_AL2_READ_ADDR_OFFSET) // DMA_CH0_AL2_READ_ADDR
// Alias for channel 0 READ_ADDR register
// 0xffffffff [31:0] CH0_AL2_READ_ADDR (-)
io_rw_32 al2_read_addr;
_REG_(DMA_CH0_AL2_WRITE_ADDR_TRIG_OFFSET) // DMA_CH0_AL2_WRITE_ADDR_TRIG
// Alias for channel 0 WRITE_ADDR register +
// 0xffffffff [31:0] CH0_AL2_WRITE_ADDR_TRIG (-)
io_rw_32 al2_write_addr_trig;
_REG_(DMA_CH0_AL3_CTRL_OFFSET) // DMA_CH0_AL3_CTRL
// Alias for channel 0 CTRL register
// 0xffffffff [31:0] CH0_AL3_CTRL (-)
io_rw_32 al3_ctrl;
_REG_(DMA_CH0_AL3_WRITE_ADDR_OFFSET) // DMA_CH0_AL3_WRITE_ADDR
// Alias for channel 0 WRITE_ADDR register
// 0xffffffff [31:0] CH0_AL3_WRITE_ADDR (-)
io_rw_32 al3_write_addr;
_REG_(DMA_CH0_AL3_TRANS_COUNT_OFFSET) // DMA_CH0_AL3_TRANS_COUNT
// Alias for channel 0 TRANS_COUNT register
// 0xffffffff [31:0] CH0_AL3_TRANS_COUNT (-)
io_rw_32 al3_transfer_count;
_REG_(DMA_CH0_AL3_READ_ADDR_TRIG_OFFSET) // DMA_CH0_AL3_READ_ADDR_TRIG
// Alias for channel 0 READ_ADDR register +
// 0xffffffff [31:0] CH0_AL3_READ_ADDR_TRIG (-)
io_rw_32 al3_read_addr_trig;
} dma_channel_hw_t;
typedef struct {
_REG_(DMA_MPU_BAR0_OFFSET) // DMA_MPU_BAR0
// Base address register for MPU region 0
// 0xffffffe0 [31:5] ADDR (0x0000000) This MPU region matches addresses where addr[31:5] (the...
io_rw_32 bar;
_REG_(DMA_MPU_LAR0_OFFSET) // DMA_MPU_LAR0
// Limit address register for MPU region 0
// 0xffffffe0 [31:5] ADDR (0x0000000) Limit address bits 31:5
// 0x00000004 [2] S (0) Determines the Secure/Non-secure (=1/0) status of...
// 0x00000002 [1] P (0) Determines the Privileged/Unprivileged (=1/0) status of...
// 0x00000001 [0] EN (0) Region enable
io_rw_32 lar;
} dma_mpu_region_hw_t;
typedef struct {
_REG_(DMA_INTR_OFFSET) // DMA_INTR
// Interrupt Status (raw)
// 0x0000ffff [15:0] INTR (0x0000) Raw interrupt status for DMA Channels 0
io_rw_32 intr;
_REG_(DMA_INTE0_OFFSET) // DMA_INTE0
// Interrupt Enables for IRQ 0
// 0x0000ffff [15:0] INTE0 (0x0000) Set bit n to pass interrupts from channel n to DMA IRQ 0
io_rw_32 inte;
_REG_(DMA_INTF0_OFFSET) // DMA_INTF0
// Force Interrupts
// 0x0000ffff [15:0] INTF0 (0x0000) Write 1s to force the corresponding bits in INTS0
io_rw_32 intf;
_REG_(DMA_INTS0_OFFSET) // DMA_INTS0
// Interrupt Status for IRQ 0
// 0x0000ffff [15:0] INTS0 (0x0000) Indicates active channel interrupt requests which are...
io_rw_32 ints;
} dma_irq_ctrl_hw_t;
typedef struct {
dma_channel_hw_t ch[16];
union {
struct {
_REG_(DMA_INTR_OFFSET) // DMA_INTR
// Interrupt Status (raw)
// 0x0000ffff [15:0] INTR (0x0000) Raw interrupt status for DMA Channels 0
io_rw_32 intr;
_REG_(DMA_INTE0_OFFSET) // DMA_INTE0
// Interrupt Enables for IRQ 0
// 0x0000ffff [15:0] INTE0 (0x0000) Set bit n to pass interrupts from channel n to DMA IRQ 0
io_rw_32 inte0;
_REG_(DMA_INTF0_OFFSET) // DMA_INTF0
// Force Interrupts
// 0x0000ffff [15:0] INTF0 (0x0000) Write 1s to force the corresponding bits in INTE0
io_rw_32 intf0;
_REG_(DMA_INTS0_OFFSET) // DMA_INTS0
// Interrupt Status for IRQ 0
// 0x0000ffff [15:0] INTS0 (0x0000) Indicates active channel interrupt requests which are...
io_rw_32 ints0;
uint32_t __pad0;
_REG_(DMA_INTE1_OFFSET) // DMA_INTE1
// Interrupt Enables for IRQ 1
// 0x0000ffff [15:0] INTE1 (0x0000) Set bit n to pass interrupts from channel n to DMA IRQ 1
io_rw_32 inte1;
_REG_(DMA_INTF1_OFFSET) // DMA_INTF1
// Force Interrupts for IRQ 1
// 0x0000ffff [15:0] INTF1 (0x0000) Write 1s to force the corresponding bits in INTF1
io_rw_32 intf1;
_REG_(DMA_INTS1_OFFSET) // DMA_INTS1
// Interrupt Status (masked) for IRQ 1
// 0x0000ffff [15:0] INTS1 (0x0000) Indicates active channel interrupt requests which are...
io_rw_32 ints1;
uint32_t __pad1;
_REG_(DMA_INTE2_OFFSET) // DMA_INTE2
// Interrupt Enables for IRQ 2
// 0x0000ffff [15:0] INTE2 (0x0000) Set bit n to pass interrupts from channel n to DMA IRQ 2
io_rw_32 inte2;
_REG_(DMA_INTF2_OFFSET) // DMA_INTF2
// Force Interrupts for IRQ 2
// 0x0000ffff [15:0] INTF2 (0x0000) Set bit n to pass interrupts from channel n to DMA IRQ 2
io_rw_32 intf2;
_REG_(DMA_INTS2_OFFSET) // DMA_INTS2
// Interrupt Status (masked) for IRQ 2
// 0x0000ffff [15:0] INTS2 (0x0000) Set bit n to pass interrupts from channel n to DMA IRQ 2
io_rw_32 ints2;
uint32_t __pad2;
_REG_(DMA_INTE3_OFFSET) // DMA_INTE3
// Interrupt Enables for IRQ 3
// 0x0000ffff [15:0] INTE3 (0x0000) Set bit n to pass interrupts from channel n to DMA IRQ 3
io_rw_32 inte3;
_REG_(DMA_INTF3_OFFSET) // DMA_INTF3
// Force Interrupts for IRQ 3
// 0x0000ffff [15:0] INTF3 (0x0000) Set bit n to pass interrupts from channel n to DMA IRQ 3
io_rw_32 intf3;
_REG_(DMA_INTS3_OFFSET) // DMA_INTS3
// Interrupt Status (masked) for IRQ 3
// 0x0000ffff [15:0] INTS3 (0x0000) Set bit n to pass interrupts from channel n to DMA IRQ 3
io_rw_32 ints3;
};
dma_irq_ctrl_hw_t irq_ctrl[4];
};
// (Description copied from array index 0 register DMA_TIMER0 applies similarly to other array indexes)
_REG_(DMA_TIMER0_OFFSET) // DMA_TIMER0
// Pacing timer (generate periodic TREQs)
// 0xffff0000 [31:16] X (0x0000) Pacing Timer Dividend
// 0x0000ffff [15:0] Y (0x0000) Pacing Timer Divisor
io_rw_32 timer[4];
_REG_(DMA_MULTI_CHAN_TRIGGER_OFFSET) // DMA_MULTI_CHAN_TRIGGER
// Trigger one or more channels simultaneously
// 0x0000ffff [15:0] MULTI_CHAN_TRIGGER (0x0000) Each bit in this register corresponds to a DMA channel
io_wo_32 multi_channel_trigger;
_REG_(DMA_SNIFF_CTRL_OFFSET) // DMA_SNIFF_CTRL
// Sniffer Control
// 0x00000800 [11] OUT_INV (0) If set, the result appears inverted (bitwise complement)...
// 0x00000400 [10] OUT_REV (0) If set, the result appears bit-reversed when read
// 0x00000200 [9] BSWAP (0) Locally perform a byte reverse on the sniffed data,...
// 0x000001e0 [8:5] CALC (0x0)
// 0x0000001e [4:1] DMACH (0x0) DMA channel for Sniffer to observe
// 0x00000001 [0] EN (0) Enable sniffer
io_rw_32 sniff_ctrl;
_REG_(DMA_SNIFF_DATA_OFFSET) // DMA_SNIFF_DATA
// Data accumulator for sniff hardware
// 0xffffffff [31:0] SNIFF_DATA (0x00000000) Write an initial seed value here before starting a DMA...
io_rw_32 sniff_data;
uint32_t _pad0;
_REG_(DMA_FIFO_LEVELS_OFFSET) // DMA_FIFO_LEVELS
// Debug RAF, WAF, TDF levels
// 0x00ff0000 [23:16] RAF_LVL (0x00) Current Read-Address-FIFO fill level
// 0x0000ff00 [15:8] WAF_LVL (0x00) Current Write-Address-FIFO fill level
// 0x000000ff [7:0] TDF_LVL (0x00) Current Transfer-Data-FIFO fill level
io_ro_32 fifo_levels;
_REG_(DMA_CHAN_ABORT_OFFSET) // DMA_CHAN_ABORT
// Abort an in-progress transfer sequence on one or more channels
// 0x0000ffff [15:0] CHAN_ABORT (0x0000) Each bit corresponds to a channel
io_wo_32 abort;
_REG_(DMA_N_CHANNELS_OFFSET) // DMA_N_CHANNELS
// The number of channels this DMA instance is equipped with
// 0x0000001f [4:0] N_CHANNELS (-)
io_ro_32 n_channels;
uint32_t _pad1[5];
// (Description copied from array index 0 register DMA_SECCFG_CH0 applies similarly to other array indexes)
_REG_(DMA_SECCFG_CH0_OFFSET) // DMA_SECCFG_CH0
// Security level configuration for channel 0.
// 0x00000004 [2] LOCK (0) LOCK is 0 at reset, and is set to 1 automatically upon a...
// 0x00000002 [1] S (1) Secure channel
// 0x00000001 [0] P (1) Privileged channel
io_rw_32 seccfg_ch[16];
// (Description copied from array index 0 register DMA_SECCFG_IRQ0 applies similarly to other array indexes)
_REG_(DMA_SECCFG_IRQ0_OFFSET) // DMA_SECCFG_IRQ0
// Security configuration for IRQ 0
// 0x00000002 [1] S (1) Secure IRQ
// 0x00000001 [0] P (1) Privileged IRQ
io_rw_32 seccfg_irq[4];
_REG_(DMA_SECCFG_MISC_OFFSET) // DMA_SECCFG_MISC
// Miscellaneous security configuration
// 0x00000200 [9] TIMER3_S (1) If 1, the TIMER3 register is only accessible from a...
// 0x00000100 [8] TIMER3_P (1) If 1, the TIMER3 register is only accessible from a...
// 0x00000080 [7] TIMER2_S (1) If 1, the TIMER2 register is only accessible from a...
// 0x00000040 [6] TIMER2_P (1) If 1, the TIMER2 register is only accessible from a...
// 0x00000020 [5] TIMER1_S (1) If 1, the TIMER1 register is only accessible from a...
// 0x00000010 [4] TIMER1_P (1) If 1, the TIMER1 register is only accessible from a...
// 0x00000008 [3] TIMER0_S (1) If 1, the TIMER0 register is only accessible from a...
// 0x00000004 [2] TIMER0_P (1) If 1, the TIMER0 register is only accessible from a...
// 0x00000002 [1] SNIFF_S (1) If 1, the sniffer can see data transfers from Secure...
// 0x00000001 [0] SNIFF_P (1) If 1, the sniffer can see data transfers from Privileged...
io_rw_32 seccfg_misc;
uint32_t _pad2[11];
_REG_(DMA_MPU_CTRL_OFFSET) // DMA_MPU_CTRL
// Control register for DMA MPU
// 0x00000008 [3] NS_HIDE_ADDR (0) By default, when a region's S bit is clear,...
// 0x00000004 [2] S (0) Determine whether an address not covered by an active...
// 0x00000002 [1] P (0) Determine whether an address not covered by an active...
io_rw_32 mpu_ctrl;
dma_mpu_region_hw_t mpu_region[8];
} dma_hw_t;
#define dma_hw ((dma_hw_t *)DMA_BASE)
static_assert(sizeof (dma_hw_t) == 0x0544, "");
#endif // _HARDWARE_STRUCTS_DMA_H

View File

@@ -0,0 +1,47 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_DMA_DEBUG_H
#define _HARDWARE_STRUCTS_DMA_DEBUG_H
/**
* \file rp2350/dma_debug.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/dma.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_dma
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/dma.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(DMA_CH0_DBG_CTDREQ_OFFSET) // DMA_CH0_DBG_CTDREQ
// Read: get channel DREQ counter (i
// 0x0000003f [5:0] CH0_DBG_CTDREQ (0x00)
io_rw_32 dbg_ctdreq;
_REG_(DMA_CH0_DBG_TCR_OFFSET) // DMA_CH0_DBG_TCR
// Read to get channel TRANS_COUNT reload value, i
// 0xffffffff [31:0] CH0_DBG_TCR (0x00000000)
io_ro_32 dbg_tcr;
uint32_t _pad0[14];
} dma_debug_channel_hw_t;
typedef struct {
dma_debug_channel_hw_t ch[16];
} dma_debug_hw_t;
#define dma_debug_hw ((dma_debug_hw_t *)(DMA_BASE + DMA_CH0_DBG_CTDREQ_OFFSET))
#endif // _HARDWARE_STRUCTS_DMA_DEBUG_H

View File

@@ -0,0 +1,71 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_GLITCH_DETECTOR_H
#define _HARDWARE_STRUCTS_GLITCH_DETECTOR_H
/**
* \file rp2350/glitch_detector.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/glitch_detector.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_glitch_detector
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/glitch_detector.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(GLITCH_DETECTOR_ARM_OFFSET) // GLITCH_DETECTOR_ARM
// Forcibly arm the glitch detectors, if they are not already armed by OTP
// 0x0000ffff [15:0] ARM (0x5bad)
io_rw_32 arm;
_REG_(GLITCH_DETECTOR_DISARM_OFFSET) // GLITCH_DETECTOR_DISARM
// 0x0000ffff [15:0] DISARM (0x0000) Forcibly disarm the glitch detectors, if they are armed by OTP
io_rw_32 disarm;
_REG_(GLITCH_DETECTOR_SENSITIVITY_OFFSET) // GLITCH_DETECTOR_SENSITIVITY
// Adjust the sensitivity of glitch detectors to values other than their OTP-provided defaults
// 0xff000000 [31:24] DEFAULT (0x00)
// 0x0000c000 [15:14] DET3_INV (0x0) Must be the inverse of DET3, else the default value is used
// 0x00003000 [13:12] DET2_INV (0x0) Must be the inverse of DET2, else the default value is used
// 0x00000c00 [11:10] DET1_INV (0x0) Must be the inverse of DET1, else the default value is used
// 0x00000300 [9:8] DET0_INV (0x0) Must be the inverse of DET0, else the default value is used
// 0x000000c0 [7:6] DET3 (0x0) Set sensitivity for detector 3
// 0x00000030 [5:4] DET2 (0x0) Set sensitivity for detector 2
// 0x0000000c [3:2] DET1 (0x0) Set sensitivity for detector 1
// 0x00000003 [1:0] DET0 (0x0) Set sensitivity for detector 0
io_rw_32 sensitivity;
_REG_(GLITCH_DETECTOR_LOCK_OFFSET) // GLITCH_DETECTOR_LOCK
// 0x000000ff [7:0] LOCK (0x00) Write any nonzero value to disable writes to ARM,...
io_rw_32 lock;
_REG_(GLITCH_DETECTOR_TRIG_STATUS_OFFSET) // GLITCH_DETECTOR_TRIG_STATUS
// Set when a detector output triggers
// 0x00000008 [3] DET3 (0)
// 0x00000004 [2] DET2 (0)
// 0x00000002 [1] DET1 (0)
// 0x00000001 [0] DET0 (0)
io_rw_32 trig_status;
_REG_(GLITCH_DETECTOR_TRIG_FORCE_OFFSET) // GLITCH_DETECTOR_TRIG_FORCE
// Simulate the firing of one or more detectors
// 0x0000000f [3:0] TRIG_FORCE (0x0)
io_wo_32 trig_force;
} glitch_detector_hw_t;
#define glitch_detector_hw ((glitch_detector_hw_t *)GLITCH_DETECTOR_BASE)
static_assert(sizeof (glitch_detector_hw_t) == 0x0018, "");
#endif // _HARDWARE_STRUCTS_GLITCH_DETECTOR_H

View File

@@ -0,0 +1,70 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_HSTX_CTRL_H
#define _HARDWARE_STRUCTS_HSTX_CTRL_H
/**
* \file rp2350/hstx_ctrl.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/hstx_ctrl.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_hstx_ctrl
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/hstx_ctrl.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(HSTX_CTRL_CSR_OFFSET) // HSTX_CTRL_CSR
// 0xf0000000 [31:28] CLKDIV (0x1) Clock period of the generated clock, measured in HSTX...
// 0x0f000000 [27:24] CLKPHASE (0x0) Set the initial phase of the generated clock
// 0x001f0000 [20:16] N_SHIFTS (0x05) Number of times to shift the shift register before...
// 0x00001f00 [12:8] SHIFT (0x06) How many bits to right-rotate the shift register by each cycle
// 0x00000060 [6:5] COUPLED_SEL (0x0) Select which PIO to use for coupled mode operation
// 0x00000010 [4] COUPLED_MODE (0) Enable the PIO-to-HSTX 1:1 connection
// 0x00000002 [1] EXPAND_EN (0) Enable the command expander
// 0x00000001 [0] EN (0) When EN is 1, the HSTX will shift out data as it appears...
io_rw_32 csr;
// (Description copied from array index 0 register HSTX_CTRL_BIT0 applies similarly to other array indexes)
_REG_(HSTX_CTRL_BIT0_OFFSET) // HSTX_CTRL_BIT0
// Data control register for output bit 0
// 0x00020000 [17] CLK (0) Connect this output to the generated clock, rather than...
// 0x00010000 [16] INV (0) Invert this data output (logical NOT)
// 0x00001f00 [12:8] SEL_N (0x00) Shift register data bit select for the second half of...
// 0x0000001f [4:0] SEL_P (0x00) Shift register data bit select for the first half of the...
io_rw_32 bit[8];
_REG_(HSTX_CTRL_EXPAND_SHIFT_OFFSET) // HSTX_CTRL_EXPAND_SHIFT
// Configure the optional shifter inside the command expander
// 0x1f000000 [28:24] ENC_N_SHIFTS (0x01) Number of times to consume from the shift register...
// 0x001f0000 [20:16] ENC_SHIFT (0x00) How many bits to right-rotate the shift register by each...
// 0x00001f00 [12:8] RAW_N_SHIFTS (0x01) Number of times to consume from the shift register...
// 0x0000001f [4:0] RAW_SHIFT (0x00) How many bits to right-rotate the shift register by each...
io_rw_32 expand_shift;
_REG_(HSTX_CTRL_EXPAND_TMDS_OFFSET) // HSTX_CTRL_EXPAND_TMDS
// Configure the optional TMDS encoder inside the command expander
// 0x00e00000 [23:21] L2_NBITS (0x0) Number of valid data bits for the lane 2 TMDS encoder,...
// 0x001f0000 [20:16] L2_ROT (0x00) Right-rotate applied to the current shifter data before...
// 0x0000e000 [15:13] L1_NBITS (0x0) Number of valid data bits for the lane 1 TMDS encoder,...
// 0x00001f00 [12:8] L1_ROT (0x00) Right-rotate applied to the current shifter data before...
// 0x000000e0 [7:5] L0_NBITS (0x0) Number of valid data bits for the lane 0 TMDS encoder,...
// 0x0000001f [4:0] L0_ROT (0x00) Right-rotate applied to the current shifter data before...
io_rw_32 expand_tmds;
} hstx_ctrl_hw_t;
#define hstx_ctrl_hw ((hstx_ctrl_hw_t *)HSTX_CTRL_BASE)
static_assert(sizeof (hstx_ctrl_hw_t) == 0x002c, "");
#endif // _HARDWARE_STRUCTS_HSTX_CTRL_H

View File

@@ -0,0 +1,45 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_HSTX_FIFO_H
#define _HARDWARE_STRUCTS_HSTX_FIFO_H
/**
* \file rp2350/hstx_fifo.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/hstx_fifo.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_hstx_fifo
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/hstx_fifo.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(HSTX_FIFO_STAT_OFFSET) // HSTX_FIFO_STAT
// FIFO status
// 0x00000400 [10] WOF (0) FIFO was written when full
// 0x00000200 [9] EMPTY (-)
// 0x00000100 [8] FULL (-)
// 0x000000ff [7:0] LEVEL (0x00)
io_rw_32 stat;
_REG_(HSTX_FIFO_FIFO_OFFSET) // HSTX_FIFO_FIFO
// Write access to FIFO
// 0xffffffff [31:0] FIFO (0x00000000)
io_wo_32 fifo;
} hstx_fifo_hw_t;
#define hstx_fifo_hw ((hstx_fifo_hw_t *)HSTX_FIFO_BASE)
static_assert(sizeof (hstx_fifo_hw_t) == 0x0008, "");
#endif // _HARDWARE_STRUCTS_HSTX_FIFO_H

View File

@@ -0,0 +1,338 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_I2C_H
#define _HARDWARE_STRUCTS_I2C_H
/**
* \file rp2350/i2c.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/i2c.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_i2c
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/i2c.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(I2C_IC_CON_OFFSET) // I2C_IC_CON
// I2C Control Register
// 0x00000400 [10] STOP_DET_IF_MASTER_ACTIVE (0) Master issues the STOP_DET interrupt irrespective of...
// 0x00000200 [9] RX_FIFO_FULL_HLD_CTRL (0) This bit controls whether DW_apb_i2c should hold the bus...
// 0x00000100 [8] TX_EMPTY_CTRL (0) This bit controls the generation of the TX_EMPTY...
// 0x00000080 [7] STOP_DET_IFADDRESSED (0) In slave mode: - 1'b1: issues the STOP_DET interrupt...
// 0x00000040 [6] IC_SLAVE_DISABLE (1) This bit controls whether I2C has its slave disabled,...
// 0x00000020 [5] IC_RESTART_EN (1) Determines whether RESTART conditions may be sent when...
// 0x00000010 [4] IC_10BITADDR_MASTER (0) Controls whether the DW_apb_i2c starts its transfers in...
// 0x00000008 [3] IC_10BITADDR_SLAVE (0) When acting as a slave, this bit controls whether the...
// 0x00000006 [2:1] SPEED (0x2) These bits control at which speed the DW_apb_i2c...
// 0x00000001 [0] MASTER_MODE (1) This bit controls whether the DW_apb_i2c master is enabled
io_rw_32 con;
_REG_(I2C_IC_TAR_OFFSET) // I2C_IC_TAR
// I2C Target Address Register
// 0x00000800 [11] SPECIAL (0) This bit indicates whether software performs a Device-ID...
// 0x00000400 [10] GC_OR_START (0) If bit 11 (SPECIAL) is set to 1 and bit 13(Device-ID) is...
// 0x000003ff [9:0] IC_TAR (0x055) This is the target address for any master transaction
io_rw_32 tar;
_REG_(I2C_IC_SAR_OFFSET) // I2C_IC_SAR
// I2C Slave Address Register
// 0x000003ff [9:0] IC_SAR (0x055) The IC_SAR holds the slave address when the I2C is...
io_rw_32 sar;
uint32_t _pad0;
_REG_(I2C_IC_DATA_CMD_OFFSET) // I2C_IC_DATA_CMD
// I2C Rx/Tx Data Buffer and Command Register
// 0x00000800 [11] FIRST_DATA_BYTE (0) Indicates the first data byte received after the address...
// 0x00000400 [10] RESTART (0) This bit controls whether a RESTART is issued before the...
// 0x00000200 [9] STOP (0) This bit controls whether a STOP is issued after the...
// 0x00000100 [8] CMD (0) This bit controls whether a read or a write is performed
// 0x000000ff [7:0] DAT (0x00) This register contains the data to be transmitted or...
io_rw_32 data_cmd;
_REG_(I2C_IC_SS_SCL_HCNT_OFFSET) // I2C_IC_SS_SCL_HCNT
// Standard Speed I2C Clock SCL High Count Register
// 0x0000ffff [15:0] IC_SS_SCL_HCNT (0x0028) This register must be set before any I2C bus transaction...
io_rw_32 ss_scl_hcnt;
_REG_(I2C_IC_SS_SCL_LCNT_OFFSET) // I2C_IC_SS_SCL_LCNT
// Standard Speed I2C Clock SCL Low Count Register
// 0x0000ffff [15:0] IC_SS_SCL_LCNT (0x002f) This register must be set before any I2C bus transaction...
io_rw_32 ss_scl_lcnt;
_REG_(I2C_IC_FS_SCL_HCNT_OFFSET) // I2C_IC_FS_SCL_HCNT
// Fast Mode or Fast Mode Plus I2C Clock SCL High Count Register
// 0x0000ffff [15:0] IC_FS_SCL_HCNT (0x0006) This register must be set before any I2C bus transaction...
io_rw_32 fs_scl_hcnt;
_REG_(I2C_IC_FS_SCL_LCNT_OFFSET) // I2C_IC_FS_SCL_LCNT
// Fast Mode or Fast Mode Plus I2C Clock SCL Low Count Register
// 0x0000ffff [15:0] IC_FS_SCL_LCNT (0x000d) This register must be set before any I2C bus transaction...
io_rw_32 fs_scl_lcnt;
uint32_t _pad1[2];
_REG_(I2C_IC_INTR_STAT_OFFSET) // I2C_IC_INTR_STAT
// I2C Interrupt Status Register
// 0x00001000 [12] R_RESTART_DET (0) See IC_RAW_INTR_STAT for a detailed description of...
// 0x00000800 [11] R_GEN_CALL (0) See IC_RAW_INTR_STAT for a detailed description of R_GEN_CALL bit
// 0x00000400 [10] R_START_DET (0) See IC_RAW_INTR_STAT for a detailed description of...
// 0x00000200 [9] R_STOP_DET (0) See IC_RAW_INTR_STAT for a detailed description of R_STOP_DET bit
// 0x00000100 [8] R_ACTIVITY (0) See IC_RAW_INTR_STAT for a detailed description of R_ACTIVITY bit
// 0x00000080 [7] R_RX_DONE (0) See IC_RAW_INTR_STAT for a detailed description of R_RX_DONE bit
// 0x00000040 [6] R_TX_ABRT (0) See IC_RAW_INTR_STAT for a detailed description of R_TX_ABRT bit
// 0x00000020 [5] R_RD_REQ (0) See IC_RAW_INTR_STAT for a detailed description of R_RD_REQ bit
// 0x00000010 [4] R_TX_EMPTY (0) See IC_RAW_INTR_STAT for a detailed description of R_TX_EMPTY bit
// 0x00000008 [3] R_TX_OVER (0) See IC_RAW_INTR_STAT for a detailed description of R_TX_OVER bit
// 0x00000004 [2] R_RX_FULL (0) See IC_RAW_INTR_STAT for a detailed description of R_RX_FULL bit
// 0x00000002 [1] R_RX_OVER (0) See IC_RAW_INTR_STAT for a detailed description of R_RX_OVER bit
// 0x00000001 [0] R_RX_UNDER (0) See IC_RAW_INTR_STAT for a detailed description of R_RX_UNDER bit
io_ro_32 intr_stat;
_REG_(I2C_IC_INTR_MASK_OFFSET) // I2C_IC_INTR_MASK
// I2C Interrupt Mask Register
// 0x00001000 [12] M_RESTART_DET (0) This bit masks the R_RESTART_DET interrupt in...
// 0x00000800 [11] M_GEN_CALL (1) This bit masks the R_GEN_CALL interrupt in IC_INTR_STAT register
// 0x00000400 [10] M_START_DET (0) This bit masks the R_START_DET interrupt in IC_INTR_STAT register
// 0x00000200 [9] M_STOP_DET (0) This bit masks the R_STOP_DET interrupt in IC_INTR_STAT register
// 0x00000100 [8] M_ACTIVITY (0) This bit masks the R_ACTIVITY interrupt in IC_INTR_STAT register
// 0x00000080 [7] M_RX_DONE (1) This bit masks the R_RX_DONE interrupt in IC_INTR_STAT register
// 0x00000040 [6] M_TX_ABRT (1) This bit masks the R_TX_ABRT interrupt in IC_INTR_STAT register
// 0x00000020 [5] M_RD_REQ (1) This bit masks the R_RD_REQ interrupt in IC_INTR_STAT register
// 0x00000010 [4] M_TX_EMPTY (1) This bit masks the R_TX_EMPTY interrupt in IC_INTR_STAT register
// 0x00000008 [3] M_TX_OVER (1) This bit masks the R_TX_OVER interrupt in IC_INTR_STAT register
// 0x00000004 [2] M_RX_FULL (1) This bit masks the R_RX_FULL interrupt in IC_INTR_STAT register
// 0x00000002 [1] M_RX_OVER (1) This bit masks the R_RX_OVER interrupt in IC_INTR_STAT register
// 0x00000001 [0] M_RX_UNDER (1) This bit masks the R_RX_UNDER interrupt in IC_INTR_STAT register
io_rw_32 intr_mask;
_REG_(I2C_IC_RAW_INTR_STAT_OFFSET) // I2C_IC_RAW_INTR_STAT
// I2C Raw Interrupt Status Register
// 0x00001000 [12] RESTART_DET (0) Indicates whether a RESTART condition has occurred on...
// 0x00000800 [11] GEN_CALL (0) Set only when a General Call address is received and it...
// 0x00000400 [10] START_DET (0) Indicates whether a START or RESTART condition has...
// 0x00000200 [9] STOP_DET (0) Indicates whether a STOP condition has occurred on the...
// 0x00000100 [8] ACTIVITY (0) This bit captures DW_apb_i2c activity and stays set...
// 0x00000080 [7] RX_DONE (0) When the DW_apb_i2c is acting as a slave-transmitter,...
// 0x00000040 [6] TX_ABRT (0) This bit indicates if DW_apb_i2c, as an I2C transmitter,...
// 0x00000020 [5] RD_REQ (0) This bit is set to 1 when DW_apb_i2c is acting as a...
// 0x00000010 [4] TX_EMPTY (0) The behavior of the TX_EMPTY interrupt status differs...
// 0x00000008 [3] TX_OVER (0) Set during transmit if the transmit buffer is filled to...
// 0x00000004 [2] RX_FULL (0) Set when the receive buffer reaches or goes above the...
// 0x00000002 [1] RX_OVER (0) Set if the receive buffer is completely filled to...
// 0x00000001 [0] RX_UNDER (0) Set if the processor attempts to read the receive buffer...
io_ro_32 raw_intr_stat;
_REG_(I2C_IC_RX_TL_OFFSET) // I2C_IC_RX_TL
// I2C Receive FIFO Threshold Register
// 0x000000ff [7:0] RX_TL (0x00) Receive FIFO Threshold Level
io_rw_32 rx_tl;
_REG_(I2C_IC_TX_TL_OFFSET) // I2C_IC_TX_TL
// I2C Transmit FIFO Threshold Register
// 0x000000ff [7:0] TX_TL (0x00) Transmit FIFO Threshold Level
io_rw_32 tx_tl;
_REG_(I2C_IC_CLR_INTR_OFFSET) // I2C_IC_CLR_INTR
// Clear Combined and Individual Interrupt Register
// 0x00000001 [0] CLR_INTR (0) Read this register to clear the combined interrupt, all...
io_ro_32 clr_intr;
_REG_(I2C_IC_CLR_RX_UNDER_OFFSET) // I2C_IC_CLR_RX_UNDER
// Clear RX_UNDER Interrupt Register
// 0x00000001 [0] CLR_RX_UNDER (0) Read this register to clear the RX_UNDER interrupt (bit...
io_ro_32 clr_rx_under;
_REG_(I2C_IC_CLR_RX_OVER_OFFSET) // I2C_IC_CLR_RX_OVER
// Clear RX_OVER Interrupt Register
// 0x00000001 [0] CLR_RX_OVER (0) Read this register to clear the RX_OVER interrupt (bit...
io_ro_32 clr_rx_over;
_REG_(I2C_IC_CLR_TX_OVER_OFFSET) // I2C_IC_CLR_TX_OVER
// Clear TX_OVER Interrupt Register
// 0x00000001 [0] CLR_TX_OVER (0) Read this register to clear the TX_OVER interrupt (bit...
io_ro_32 clr_tx_over;
_REG_(I2C_IC_CLR_RD_REQ_OFFSET) // I2C_IC_CLR_RD_REQ
// Clear RD_REQ Interrupt Register
// 0x00000001 [0] CLR_RD_REQ (0) Read this register to clear the RD_REQ interrupt (bit 5)...
io_ro_32 clr_rd_req;
_REG_(I2C_IC_CLR_TX_ABRT_OFFSET) // I2C_IC_CLR_TX_ABRT
// Clear TX_ABRT Interrupt Register
// 0x00000001 [0] CLR_TX_ABRT (0) Read this register to clear the TX_ABRT interrupt (bit...
io_ro_32 clr_tx_abrt;
_REG_(I2C_IC_CLR_RX_DONE_OFFSET) // I2C_IC_CLR_RX_DONE
// Clear RX_DONE Interrupt Register
// 0x00000001 [0] CLR_RX_DONE (0) Read this register to clear the RX_DONE interrupt (bit...
io_ro_32 clr_rx_done;
_REG_(I2C_IC_CLR_ACTIVITY_OFFSET) // I2C_IC_CLR_ACTIVITY
// Clear ACTIVITY Interrupt Register
// 0x00000001 [0] CLR_ACTIVITY (0) Reading this register clears the ACTIVITY interrupt if...
io_ro_32 clr_activity;
_REG_(I2C_IC_CLR_STOP_DET_OFFSET) // I2C_IC_CLR_STOP_DET
// Clear STOP_DET Interrupt Register
// 0x00000001 [0] CLR_STOP_DET (0) Read this register to clear the STOP_DET interrupt (bit...
io_ro_32 clr_stop_det;
_REG_(I2C_IC_CLR_START_DET_OFFSET) // I2C_IC_CLR_START_DET
// Clear START_DET Interrupt Register
// 0x00000001 [0] CLR_START_DET (0) Read this register to clear the START_DET interrupt (bit...
io_ro_32 clr_start_det;
_REG_(I2C_IC_CLR_GEN_CALL_OFFSET) // I2C_IC_CLR_GEN_CALL
// Clear GEN_CALL Interrupt Register
// 0x00000001 [0] CLR_GEN_CALL (0) Read this register to clear the GEN_CALL interrupt (bit...
io_ro_32 clr_gen_call;
_REG_(I2C_IC_ENABLE_OFFSET) // I2C_IC_ENABLE
// I2C ENABLE Register
// 0x00000004 [2] TX_CMD_BLOCK (0) In Master mode: - 1'b1: Blocks the transmission of data...
// 0x00000002 [1] ABORT (0) When set, the controller initiates the transfer abort
// 0x00000001 [0] ENABLE (0) Controls whether the DW_apb_i2c is enabled
io_rw_32 enable;
_REG_(I2C_IC_STATUS_OFFSET) // I2C_IC_STATUS
// I2C STATUS Register
// 0x00000040 [6] SLV_ACTIVITY (0) Slave FSM Activity Status
// 0x00000020 [5] MST_ACTIVITY (0) Master FSM Activity Status
// 0x00000010 [4] RFF (0) Receive FIFO Completely Full
// 0x00000008 [3] RFNE (0) Receive FIFO Not Empty
// 0x00000004 [2] TFE (1) Transmit FIFO Completely Empty
// 0x00000002 [1] TFNF (1) Transmit FIFO Not Full
// 0x00000001 [0] ACTIVITY (0) I2C Activity Status
io_ro_32 status;
_REG_(I2C_IC_TXFLR_OFFSET) // I2C_IC_TXFLR
// I2C Transmit FIFO Level Register
// 0x0000001f [4:0] TXFLR (0x00) Transmit FIFO Level
io_ro_32 txflr;
_REG_(I2C_IC_RXFLR_OFFSET) // I2C_IC_RXFLR
// I2C Receive FIFO Level Register
// 0x0000001f [4:0] RXFLR (0x00) Receive FIFO Level
io_ro_32 rxflr;
_REG_(I2C_IC_SDA_HOLD_OFFSET) // I2C_IC_SDA_HOLD
// I2C SDA Hold Time Length Register
// 0x00ff0000 [23:16] IC_SDA_RX_HOLD (0x00) Sets the required SDA hold time in units of ic_clk...
// 0x0000ffff [15:0] IC_SDA_TX_HOLD (0x0001) Sets the required SDA hold time in units of ic_clk...
io_rw_32 sda_hold;
_REG_(I2C_IC_TX_ABRT_SOURCE_OFFSET) // I2C_IC_TX_ABRT_SOURCE
// I2C Transmit Abort Source Register
// 0xff800000 [31:23] TX_FLUSH_CNT (0x000) This field indicates the number of Tx FIFO Data Commands...
// 0x00010000 [16] ABRT_USER_ABRT (0) This is a master-mode-only bit
// 0x00008000 [15] ABRT_SLVRD_INTX (0) 1: When the processor side responds to a slave mode...
// 0x00004000 [14] ABRT_SLV_ARBLOST (0) This field indicates that a Slave has lost the bus while...
// 0x00002000 [13] ABRT_SLVFLUSH_TXFIFO (0) This field specifies that the Slave has received a read...
// 0x00001000 [12] ARB_LOST (0) This field specifies that the Master has lost...
// 0x00000800 [11] ABRT_MASTER_DIS (0) This field indicates that the User tries to initiate a...
// 0x00000400 [10] ABRT_10B_RD_NORSTRT (0) This field indicates that the restart is disabled...
// 0x00000200 [9] ABRT_SBYTE_NORSTRT (0) To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT...
// 0x00000100 [8] ABRT_HS_NORSTRT (0) This field indicates that the restart is disabled...
// 0x00000080 [7] ABRT_SBYTE_ACKDET (0) This field indicates that the Master has sent a START...
// 0x00000040 [6] ABRT_HS_ACKDET (0) This field indicates that the Master is in High Speed...
// 0x00000020 [5] ABRT_GCALL_READ (0) This field indicates that DW_apb_i2c in the master mode...
// 0x00000010 [4] ABRT_GCALL_NOACK (0) This field indicates that DW_apb_i2c in master mode has...
// 0x00000008 [3] ABRT_TXDATA_NOACK (0) This field indicates the master-mode only bit
// 0x00000004 [2] ABRT_10ADDR2_NOACK (0) This field indicates that the Master is in 10-bit...
// 0x00000002 [1] ABRT_10ADDR1_NOACK (0) This field indicates that the Master is in 10-bit...
// 0x00000001 [0] ABRT_7B_ADDR_NOACK (0) This field indicates that the Master is in 7-bit...
io_ro_32 tx_abrt_source;
_REG_(I2C_IC_SLV_DATA_NACK_ONLY_OFFSET) // I2C_IC_SLV_DATA_NACK_ONLY
// Generate Slave Data NACK Register
// 0x00000001 [0] NACK (0) Generate NACK
io_rw_32 slv_data_nack_only;
_REG_(I2C_IC_DMA_CR_OFFSET) // I2C_IC_DMA_CR
// DMA Control Register
// 0x00000002 [1] TDMAE (0) Transmit DMA Enable
// 0x00000001 [0] RDMAE (0) Receive DMA Enable
io_rw_32 dma_cr;
_REG_(I2C_IC_DMA_TDLR_OFFSET) // I2C_IC_DMA_TDLR
// DMA Transmit Data Level Register
// 0x0000000f [3:0] DMATDL (0x0) Transmit Data Level
io_rw_32 dma_tdlr;
_REG_(I2C_IC_DMA_RDLR_OFFSET) // I2C_IC_DMA_RDLR
// DMA Transmit Data Level Register
// 0x0000000f [3:0] DMARDL (0x0) Receive Data Level
io_rw_32 dma_rdlr;
_REG_(I2C_IC_SDA_SETUP_OFFSET) // I2C_IC_SDA_SETUP
// I2C SDA Setup Register
// 0x000000ff [7:0] SDA_SETUP (0x64) SDA Setup
io_rw_32 sda_setup;
_REG_(I2C_IC_ACK_GENERAL_CALL_OFFSET) // I2C_IC_ACK_GENERAL_CALL
// I2C ACK General Call Register
// 0x00000001 [0] ACK_GEN_CALL (1) ACK General Call
io_rw_32 ack_general_call;
_REG_(I2C_IC_ENABLE_STATUS_OFFSET) // I2C_IC_ENABLE_STATUS
// I2C Enable Status Register
// 0x00000004 [2] SLV_RX_DATA_LOST (0) Slave Received Data Lost
// 0x00000002 [1] SLV_DISABLED_WHILE_BUSY (0) Slave Disabled While Busy (Transmit, Receive)
// 0x00000001 [0] IC_EN (0) ic_en Status
io_ro_32 enable_status;
_REG_(I2C_IC_FS_SPKLEN_OFFSET) // I2C_IC_FS_SPKLEN
// I2C SS, FS or FM+ spike suppression limit
// 0x000000ff [7:0] IC_FS_SPKLEN (0x07) This register must be set before any I2C bus transaction...
io_rw_32 fs_spklen;
uint32_t _pad2;
_REG_(I2C_IC_CLR_RESTART_DET_OFFSET) // I2C_IC_CLR_RESTART_DET
// Clear RESTART_DET Interrupt Register
// 0x00000001 [0] CLR_RESTART_DET (0) Read this register to clear the RESTART_DET interrupt...
io_ro_32 clr_restart_det;
uint32_t _pad3[18];
_REG_(I2C_IC_COMP_PARAM_1_OFFSET) // I2C_IC_COMP_PARAM_1
// Component Parameter Register 1
// 0x00ff0000 [23:16] TX_BUFFER_DEPTH (0x00) TX Buffer Depth = 16
// 0x0000ff00 [15:8] RX_BUFFER_DEPTH (0x00) RX Buffer Depth = 16
// 0x00000080 [7] ADD_ENCODED_PARAMS (0) Encoded parameters not visible
// 0x00000040 [6] HAS_DMA (0) DMA handshaking signals are enabled
// 0x00000020 [5] INTR_IO (0) COMBINED Interrupt outputs
// 0x00000010 [4] HC_COUNT_VALUES (0) Programmable count values for each mode
// 0x0000000c [3:2] MAX_SPEED_MODE (0x0) MAX SPEED MODE = FAST MODE
// 0x00000003 [1:0] APB_DATA_WIDTH (0x0) APB data bus width is 32 bits
io_ro_32 comp_param_1;
_REG_(I2C_IC_COMP_VERSION_OFFSET) // I2C_IC_COMP_VERSION
// I2C Component Version Register
// 0xffffffff [31:0] IC_COMP_VERSION (0x3230312a)
io_ro_32 comp_version;
_REG_(I2C_IC_COMP_TYPE_OFFSET) // I2C_IC_COMP_TYPE
// I2C Component Type Register
// 0xffffffff [31:0] IC_COMP_TYPE (0x44570140) Designware Component Type number = 0x44_57_01_40
io_ro_32 comp_type;
} i2c_hw_t;
#define i2c0_hw ((i2c_hw_t *)I2C0_BASE)
#define i2c1_hw ((i2c_hw_t *)I2C1_BASE)
static_assert(sizeof (i2c_hw_t) == 0x0100, "");
#endif // _HARDWARE_STRUCTS_I2C_H

View File

@@ -0,0 +1,87 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_INTERP_H
#define _HARDWARE_STRUCTS_INTERP_H
/**
* \file rp2350/interp.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/sio.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_sio
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/sio.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
// (Description copied from array index 0 register SIO_INTERP0_ACCUM0 applies similarly to other array indexes)
_REG_(SIO_INTERP0_ACCUM0_OFFSET) // SIO_INTERP0_ACCUM0
// Read/write access to accumulator 0
// 0xffffffff [31:0] INTERP0_ACCUM0 (0x00000000)
io_rw_32 accum[2];
// (Description copied from array index 0 register SIO_INTERP0_BASE0 applies similarly to other array indexes)
_REG_(SIO_INTERP0_BASE0_OFFSET) // SIO_INTERP0_BASE0
// Read/write access to BASE0 register
// 0xffffffff [31:0] INTERP0_BASE0 (0x00000000)
io_rw_32 base[3];
// (Description copied from array index 0 register SIO_INTERP0_POP_LANE0 applies similarly to other array indexes)
_REG_(SIO_INTERP0_POP_LANE0_OFFSET) // SIO_INTERP0_POP_LANE0
// Read LANE0 result, and simultaneously write lane results to both accumulators (POP)
// 0xffffffff [31:0] INTERP0_POP_LANE0 (0x00000000)
io_ro_32 pop[3];
// (Description copied from array index 0 register SIO_INTERP0_PEEK_LANE0 applies similarly to other array indexes)
_REG_(SIO_INTERP0_PEEK_LANE0_OFFSET) // SIO_INTERP0_PEEK_LANE0
// Read LANE0 result, without altering any internal state (PEEK)
// 0xffffffff [31:0] INTERP0_PEEK_LANE0 (0x00000000)
io_ro_32 peek[3];
// (Description copied from array index 0 register SIO_INTERP0_CTRL_LANE0 applies similarly to other array indexes)
_REG_(SIO_INTERP0_CTRL_LANE0_OFFSET) // SIO_INTERP0_CTRL_LANE0
// Control register for lane 0
// 0x02000000 [25] OVERF (0) Set if either OVERF0 or OVERF1 is set
// 0x01000000 [24] OVERF1 (0) Indicates if any masked-off MSBs in ACCUM1 are set
// 0x00800000 [23] OVERF0 (0) Indicates if any masked-off MSBs in ACCUM0 are set
// 0x00200000 [21] BLEND (0) Only present on INTERP0 on each core
// 0x00180000 [20:19] FORCE_MSB (0x0) ORed into bits 29:28 of the lane result presented to the...
// 0x00040000 [18] ADD_RAW (0) If 1, mask + shift is bypassed for LANE0 result
// 0x00020000 [17] CROSS_RESULT (0) If 1, feed the opposite lane's result into this lane's...
// 0x00010000 [16] CROSS_INPUT (0) If 1, feed the opposite lane's accumulator into this...
// 0x00008000 [15] SIGNED (0) If SIGNED is set, the shifted and masked accumulator...
// 0x00007c00 [14:10] MASK_MSB (0x00) The most-significant bit allowed to pass by the mask...
// 0x000003e0 [9:5] MASK_LSB (0x00) The least-significant bit allowed to pass by the mask (inclusive)
// 0x0000001f [4:0] SHIFT (0x00) Right-rotate applied to accumulator before masking
io_rw_32 ctrl[2];
// (Description copied from array index 0 register SIO_INTERP0_ACCUM0_ADD applies similarly to other array indexes)
_REG_(SIO_INTERP0_ACCUM0_ADD_OFFSET) // SIO_INTERP0_ACCUM0_ADD
// Values written here are atomically added to ACCUM0
// 0x00ffffff [23:0] INTERP0_ACCUM0_ADD (0x000000)
io_rw_32 add_raw[2];
_REG_(SIO_INTERP0_BASE_1AND0_OFFSET) // SIO_INTERP0_BASE_1AND0
// On write, the lower 16 bits go to BASE0, upper bits to BASE1 simultaneously.
// 0xffffffff [31:0] INTERP0_BASE_1AND0 (0x00000000)
io_wo_32 base01;
} interp_hw_t;
#define interp_hw_array ((interp_hw_t *)(SIO_BASE + SIO_INTERP0_ACCUM0_OFFSET))
#define interp_hw_array_ns ((interp_hw_t *)(SIO_NONSEC_BASE + SIO_INTERP0_ACCUM0_OFFSET))
static_assert(sizeof (interp_hw_t) == 0x0040, "");
#define interp0_hw (&interp_hw_array[0])
#define interp1_hw (&interp_hw_array[1])
#endif // _HARDWARE_STRUCTS_INTERP_H

View File

@@ -0,0 +1,452 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_IO_BANK0_H
#define _HARDWARE_STRUCTS_IO_BANK0_H
/**
* \file rp2350/io_bank0.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/io_bank0.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_io_bank0
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/io_bank0.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
/**
* \brief GPIO pin function selectors on RP2350 (used as typedef \ref gpio_function_t)
* \ingroup hardware_gpio
*/
typedef enum gpio_function_rp2350 {
GPIO_FUNC_HSTX = 0, ///< Select HSTX as GPIO pin function
GPIO_FUNC_SPI = 1, ///< Select SPI as GPIO pin function
GPIO_FUNC_UART = 2, ///< Select UART as GPIO pin function
GPIO_FUNC_I2C = 3, ///< Select I2C as GPIO pin function
GPIO_FUNC_PWM = 4, ///< Select PWM as GPIO pin function
GPIO_FUNC_SIO = 5, ///< Select SIO as GPIO pin function
GPIO_FUNC_PIO0 = 6, ///< Select PIO0 as GPIO pin function
GPIO_FUNC_PIO1 = 7, ///< Select PIO1 as GPIO pin function
GPIO_FUNC_PIO2 = 8, ///< Select PIO2 as GPIO pin function
GPIO_FUNC_GPCK = 9, ///< Select GPCK as GPIO pin function
GPIO_FUNC_XIP_CS1 = 9, ///< Select XIP CS1 as GPIO pin function
GPIO_FUNC_CORESIGHT_TRACE = 9, ///< Select CORESIGHT TRACE as GPIO pin function
GPIO_FUNC_USB = 10, ///< Select USB as GPIO pin function
GPIO_FUNC_UART_AUX = 11, ///< Select UART_AUX as GPIO pin function
GPIO_FUNC_NULL = 0x1f, ///< Select NULL as GPIO pin function
} gpio_function_t;
typedef struct {
_REG_(IO_BANK0_GPIO0_STATUS_OFFSET) // IO_BANK0_GPIO0_STATUS
// 0x04000000 [26] IRQTOPROC (0) interrupt to processors, after override is applied
// 0x00020000 [17] INFROMPAD (0) input signal from pad, before filtering and override are applied
// 0x00002000 [13] OETOPAD (0) output enable to pad after register override is applied
// 0x00000200 [9] OUTTOPAD (0) output signal to pad after register override is applied
io_ro_32 status;
_REG_(IO_BANK0_GPIO0_CTRL_OFFSET) // IO_BANK0_GPIO0_CTRL
// 0x30000000 [29:28] IRQOVER (0x0)
// 0x00030000 [17:16] INOVER (0x0)
// 0x0000c000 [15:14] OEOVER (0x0)
// 0x00003000 [13:12] OUTOVER (0x0)
// 0x0000001f [4:0] FUNCSEL (0x1f) 0-31 -> selects pin function according to the gpio table +
io_rw_32 ctrl;
} io_bank0_status_ctrl_hw_t;
typedef struct {
// (Description copied from array index 0 register IO_BANK0_PROC0_INTE0 applies similarly to other array indexes)
_REG_(IO_BANK0_PROC0_INTE0_OFFSET) // IO_BANK0_PROC0_INTE0
// Interrupt Enable for proc0
// 0x80000000 [31] GPIO7_EDGE_HIGH (0)
// 0x40000000 [30] GPIO7_EDGE_LOW (0)
// 0x20000000 [29] GPIO7_LEVEL_HIGH (0)
// 0x10000000 [28] GPIO7_LEVEL_LOW (0)
// 0x08000000 [27] GPIO6_EDGE_HIGH (0)
// 0x04000000 [26] GPIO6_EDGE_LOW (0)
// 0x02000000 [25] GPIO6_LEVEL_HIGH (0)
// 0x01000000 [24] GPIO6_LEVEL_LOW (0)
// 0x00800000 [23] GPIO5_EDGE_HIGH (0)
// 0x00400000 [22] GPIO5_EDGE_LOW (0)
// 0x00200000 [21] GPIO5_LEVEL_HIGH (0)
// 0x00100000 [20] GPIO5_LEVEL_LOW (0)
// 0x00080000 [19] GPIO4_EDGE_HIGH (0)
// 0x00040000 [18] GPIO4_EDGE_LOW (0)
// 0x00020000 [17] GPIO4_LEVEL_HIGH (0)
// 0x00010000 [16] GPIO4_LEVEL_LOW (0)
// 0x00008000 [15] GPIO3_EDGE_HIGH (0)
// 0x00004000 [14] GPIO3_EDGE_LOW (0)
// 0x00002000 [13] GPIO3_LEVEL_HIGH (0)
// 0x00001000 [12] GPIO3_LEVEL_LOW (0)
// 0x00000800 [11] GPIO2_EDGE_HIGH (0)
// 0x00000400 [10] GPIO2_EDGE_LOW (0)
// 0x00000200 [9] GPIO2_LEVEL_HIGH (0)
// 0x00000100 [8] GPIO2_LEVEL_LOW (0)
// 0x00000080 [7] GPIO1_EDGE_HIGH (0)
// 0x00000040 [6] GPIO1_EDGE_LOW (0)
// 0x00000020 [5] GPIO1_LEVEL_HIGH (0)
// 0x00000010 [4] GPIO1_LEVEL_LOW (0)
// 0x00000008 [3] GPIO0_EDGE_HIGH (0)
// 0x00000004 [2] GPIO0_EDGE_LOW (0)
// 0x00000002 [1] GPIO0_LEVEL_HIGH (0)
// 0x00000001 [0] GPIO0_LEVEL_LOW (0)
io_rw_32 inte[6];
// (Description copied from array index 0 register IO_BANK0_PROC0_INTF0 applies similarly to other array indexes)
_REG_(IO_BANK0_PROC0_INTF0_OFFSET) // IO_BANK0_PROC0_INTF0
// Interrupt Force for proc0
// 0x80000000 [31] GPIO7_EDGE_HIGH (0)
// 0x40000000 [30] GPIO7_EDGE_LOW (0)
// 0x20000000 [29] GPIO7_LEVEL_HIGH (0)
// 0x10000000 [28] GPIO7_LEVEL_LOW (0)
// 0x08000000 [27] GPIO6_EDGE_HIGH (0)
// 0x04000000 [26] GPIO6_EDGE_LOW (0)
// 0x02000000 [25] GPIO6_LEVEL_HIGH (0)
// 0x01000000 [24] GPIO6_LEVEL_LOW (0)
// 0x00800000 [23] GPIO5_EDGE_HIGH (0)
// 0x00400000 [22] GPIO5_EDGE_LOW (0)
// 0x00200000 [21] GPIO5_LEVEL_HIGH (0)
// 0x00100000 [20] GPIO5_LEVEL_LOW (0)
// 0x00080000 [19] GPIO4_EDGE_HIGH (0)
// 0x00040000 [18] GPIO4_EDGE_LOW (0)
// 0x00020000 [17] GPIO4_LEVEL_HIGH (0)
// 0x00010000 [16] GPIO4_LEVEL_LOW (0)
// 0x00008000 [15] GPIO3_EDGE_HIGH (0)
// 0x00004000 [14] GPIO3_EDGE_LOW (0)
// 0x00002000 [13] GPIO3_LEVEL_HIGH (0)
// 0x00001000 [12] GPIO3_LEVEL_LOW (0)
// 0x00000800 [11] GPIO2_EDGE_HIGH (0)
// 0x00000400 [10] GPIO2_EDGE_LOW (0)
// 0x00000200 [9] GPIO2_LEVEL_HIGH (0)
// 0x00000100 [8] GPIO2_LEVEL_LOW (0)
// 0x00000080 [7] GPIO1_EDGE_HIGH (0)
// 0x00000040 [6] GPIO1_EDGE_LOW (0)
// 0x00000020 [5] GPIO1_LEVEL_HIGH (0)
// 0x00000010 [4] GPIO1_LEVEL_LOW (0)
// 0x00000008 [3] GPIO0_EDGE_HIGH (0)
// 0x00000004 [2] GPIO0_EDGE_LOW (0)
// 0x00000002 [1] GPIO0_LEVEL_HIGH (0)
// 0x00000001 [0] GPIO0_LEVEL_LOW (0)
io_rw_32 intf[6];
// (Description copied from array index 0 register IO_BANK0_PROC0_INTS0 applies similarly to other array indexes)
_REG_(IO_BANK0_PROC0_INTS0_OFFSET) // IO_BANK0_PROC0_INTS0
// Interrupt status after masking & forcing for proc0
// 0x80000000 [31] GPIO7_EDGE_HIGH (0)
// 0x40000000 [30] GPIO7_EDGE_LOW (0)
// 0x20000000 [29] GPIO7_LEVEL_HIGH (0)
// 0x10000000 [28] GPIO7_LEVEL_LOW (0)
// 0x08000000 [27] GPIO6_EDGE_HIGH (0)
// 0x04000000 [26] GPIO6_EDGE_LOW (0)
// 0x02000000 [25] GPIO6_LEVEL_HIGH (0)
// 0x01000000 [24] GPIO6_LEVEL_LOW (0)
// 0x00800000 [23] GPIO5_EDGE_HIGH (0)
// 0x00400000 [22] GPIO5_EDGE_LOW (0)
// 0x00200000 [21] GPIO5_LEVEL_HIGH (0)
// 0x00100000 [20] GPIO5_LEVEL_LOW (0)
// 0x00080000 [19] GPIO4_EDGE_HIGH (0)
// 0x00040000 [18] GPIO4_EDGE_LOW (0)
// 0x00020000 [17] GPIO4_LEVEL_HIGH (0)
// 0x00010000 [16] GPIO4_LEVEL_LOW (0)
// 0x00008000 [15] GPIO3_EDGE_HIGH (0)
// 0x00004000 [14] GPIO3_EDGE_LOW (0)
// 0x00002000 [13] GPIO3_LEVEL_HIGH (0)
// 0x00001000 [12] GPIO3_LEVEL_LOW (0)
// 0x00000800 [11] GPIO2_EDGE_HIGH (0)
// 0x00000400 [10] GPIO2_EDGE_LOW (0)
// 0x00000200 [9] GPIO2_LEVEL_HIGH (0)
// 0x00000100 [8] GPIO2_LEVEL_LOW (0)
// 0x00000080 [7] GPIO1_EDGE_HIGH (0)
// 0x00000040 [6] GPIO1_EDGE_LOW (0)
// 0x00000020 [5] GPIO1_LEVEL_HIGH (0)
// 0x00000010 [4] GPIO1_LEVEL_LOW (0)
// 0x00000008 [3] GPIO0_EDGE_HIGH (0)
// 0x00000004 [2] GPIO0_EDGE_LOW (0)
// 0x00000002 [1] GPIO0_LEVEL_HIGH (0)
// 0x00000001 [0] GPIO0_LEVEL_LOW (0)
io_ro_32 ints[6];
} io_bank0_irq_ctrl_hw_t;
/// \tag::io_bank0_hw[]
typedef struct {
io_bank0_status_ctrl_hw_t io[48];
uint32_t _pad0[32];
// (Description copied from array index 0 register IO_BANK0_IRQSUMMARY_PROC0_SECURE0 applies similarly to other array indexes)
_REG_(IO_BANK0_IRQSUMMARY_PROC0_SECURE0_OFFSET) // IO_BANK0_IRQSUMMARY_PROC0_SECURE0
// 0x80000000 [31] GPIO31 (0)
// 0x40000000 [30] GPIO30 (0)
// 0x20000000 [29] GPIO29 (0)
// 0x10000000 [28] GPIO28 (0)
// 0x08000000 [27] GPIO27 (0)
// 0x04000000 [26] GPIO26 (0)
// 0x02000000 [25] GPIO25 (0)
// 0x01000000 [24] GPIO24 (0)
// 0x00800000 [23] GPIO23 (0)
// 0x00400000 [22] GPIO22 (0)
// 0x00200000 [21] GPIO21 (0)
// 0x00100000 [20] GPIO20 (0)
// 0x00080000 [19] GPIO19 (0)
// 0x00040000 [18] GPIO18 (0)
// 0x00020000 [17] GPIO17 (0)
// 0x00010000 [16] GPIO16 (0)
// 0x00008000 [15] GPIO15 (0)
// 0x00004000 [14] GPIO14 (0)
// 0x00002000 [13] GPIO13 (0)
// 0x00001000 [12] GPIO12 (0)
// 0x00000800 [11] GPIO11 (0)
// 0x00000400 [10] GPIO10 (0)
// 0x00000200 [9] GPIO9 (0)
// 0x00000100 [8] GPIO8 (0)
// 0x00000080 [7] GPIO7 (0)
// 0x00000040 [6] GPIO6 (0)
// 0x00000020 [5] GPIO5 (0)
// 0x00000010 [4] GPIO4 (0)
// 0x00000008 [3] GPIO3 (0)
// 0x00000004 [2] GPIO2 (0)
// 0x00000002 [1] GPIO1 (0)
// 0x00000001 [0] GPIO0 (0)
io_ro_32 irqsummary_proc0_secure[2];
// (Description copied from array index 0 register IO_BANK0_IRQSUMMARY_PROC0_NONSECURE0 applies similarly to other array indexes)
_REG_(IO_BANK0_IRQSUMMARY_PROC0_NONSECURE0_OFFSET) // IO_BANK0_IRQSUMMARY_PROC0_NONSECURE0
// 0x80000000 [31] GPIO31 (0)
// 0x40000000 [30] GPIO30 (0)
// 0x20000000 [29] GPIO29 (0)
// 0x10000000 [28] GPIO28 (0)
// 0x08000000 [27] GPIO27 (0)
// 0x04000000 [26] GPIO26 (0)
// 0x02000000 [25] GPIO25 (0)
// 0x01000000 [24] GPIO24 (0)
// 0x00800000 [23] GPIO23 (0)
// 0x00400000 [22] GPIO22 (0)
// 0x00200000 [21] GPIO21 (0)
// 0x00100000 [20] GPIO20 (0)
// 0x00080000 [19] GPIO19 (0)
// 0x00040000 [18] GPIO18 (0)
// 0x00020000 [17] GPIO17 (0)
// 0x00010000 [16] GPIO16 (0)
// 0x00008000 [15] GPIO15 (0)
// 0x00004000 [14] GPIO14 (0)
// 0x00002000 [13] GPIO13 (0)
// 0x00001000 [12] GPIO12 (0)
// 0x00000800 [11] GPIO11 (0)
// 0x00000400 [10] GPIO10 (0)
// 0x00000200 [9] GPIO9 (0)
// 0x00000100 [8] GPIO8 (0)
// 0x00000080 [7] GPIO7 (0)
// 0x00000040 [6] GPIO6 (0)
// 0x00000020 [5] GPIO5 (0)
// 0x00000010 [4] GPIO4 (0)
// 0x00000008 [3] GPIO3 (0)
// 0x00000004 [2] GPIO2 (0)
// 0x00000002 [1] GPIO1 (0)
// 0x00000001 [0] GPIO0 (0)
io_ro_32 irqsummary_proc0_nonsecure[2];
// (Description copied from array index 0 register IO_BANK0_IRQSUMMARY_PROC1_SECURE0 applies similarly to other array indexes)
_REG_(IO_BANK0_IRQSUMMARY_PROC1_SECURE0_OFFSET) // IO_BANK0_IRQSUMMARY_PROC1_SECURE0
// 0x80000000 [31] GPIO31 (0)
// 0x40000000 [30] GPIO30 (0)
// 0x20000000 [29] GPIO29 (0)
// 0x10000000 [28] GPIO28 (0)
// 0x08000000 [27] GPIO27 (0)
// 0x04000000 [26] GPIO26 (0)
// 0x02000000 [25] GPIO25 (0)
// 0x01000000 [24] GPIO24 (0)
// 0x00800000 [23] GPIO23 (0)
// 0x00400000 [22] GPIO22 (0)
// 0x00200000 [21] GPIO21 (0)
// 0x00100000 [20] GPIO20 (0)
// 0x00080000 [19] GPIO19 (0)
// 0x00040000 [18] GPIO18 (0)
// 0x00020000 [17] GPIO17 (0)
// 0x00010000 [16] GPIO16 (0)
// 0x00008000 [15] GPIO15 (0)
// 0x00004000 [14] GPIO14 (0)
// 0x00002000 [13] GPIO13 (0)
// 0x00001000 [12] GPIO12 (0)
// 0x00000800 [11] GPIO11 (0)
// 0x00000400 [10] GPIO10 (0)
// 0x00000200 [9] GPIO9 (0)
// 0x00000100 [8] GPIO8 (0)
// 0x00000080 [7] GPIO7 (0)
// 0x00000040 [6] GPIO6 (0)
// 0x00000020 [5] GPIO5 (0)
// 0x00000010 [4] GPIO4 (0)
// 0x00000008 [3] GPIO3 (0)
// 0x00000004 [2] GPIO2 (0)
// 0x00000002 [1] GPIO1 (0)
// 0x00000001 [0] GPIO0 (0)
io_ro_32 irqsummary_proc1_secure[2];
// (Description copied from array index 0 register IO_BANK0_IRQSUMMARY_PROC1_NONSECURE0 applies similarly to other array indexes)
_REG_(IO_BANK0_IRQSUMMARY_PROC1_NONSECURE0_OFFSET) // IO_BANK0_IRQSUMMARY_PROC1_NONSECURE0
// 0x80000000 [31] GPIO31 (0)
// 0x40000000 [30] GPIO30 (0)
// 0x20000000 [29] GPIO29 (0)
// 0x10000000 [28] GPIO28 (0)
// 0x08000000 [27] GPIO27 (0)
// 0x04000000 [26] GPIO26 (0)
// 0x02000000 [25] GPIO25 (0)
// 0x01000000 [24] GPIO24 (0)
// 0x00800000 [23] GPIO23 (0)
// 0x00400000 [22] GPIO22 (0)
// 0x00200000 [21] GPIO21 (0)
// 0x00100000 [20] GPIO20 (0)
// 0x00080000 [19] GPIO19 (0)
// 0x00040000 [18] GPIO18 (0)
// 0x00020000 [17] GPIO17 (0)
// 0x00010000 [16] GPIO16 (0)
// 0x00008000 [15] GPIO15 (0)
// 0x00004000 [14] GPIO14 (0)
// 0x00002000 [13] GPIO13 (0)
// 0x00001000 [12] GPIO12 (0)
// 0x00000800 [11] GPIO11 (0)
// 0x00000400 [10] GPIO10 (0)
// 0x00000200 [9] GPIO9 (0)
// 0x00000100 [8] GPIO8 (0)
// 0x00000080 [7] GPIO7 (0)
// 0x00000040 [6] GPIO6 (0)
// 0x00000020 [5] GPIO5 (0)
// 0x00000010 [4] GPIO4 (0)
// 0x00000008 [3] GPIO3 (0)
// 0x00000004 [2] GPIO2 (0)
// 0x00000002 [1] GPIO1 (0)
// 0x00000001 [0] GPIO0 (0)
io_ro_32 irqsummary_proc1_nonsecure[2];
// (Description copied from array index 0 register IO_BANK0_IRQSUMMARY_DORMANT_WAKE_SECURE0 applies similarly to other array indexes)
_REG_(IO_BANK0_IRQSUMMARY_DORMANT_WAKE_SECURE0_OFFSET) // IO_BANK0_IRQSUMMARY_DORMANT_WAKE_SECURE0
// 0x80000000 [31] GPIO31 (0)
// 0x40000000 [30] GPIO30 (0)
// 0x20000000 [29] GPIO29 (0)
// 0x10000000 [28] GPIO28 (0)
// 0x08000000 [27] GPIO27 (0)
// 0x04000000 [26] GPIO26 (0)
// 0x02000000 [25] GPIO25 (0)
// 0x01000000 [24] GPIO24 (0)
// 0x00800000 [23] GPIO23 (0)
// 0x00400000 [22] GPIO22 (0)
// 0x00200000 [21] GPIO21 (0)
// 0x00100000 [20] GPIO20 (0)
// 0x00080000 [19] GPIO19 (0)
// 0x00040000 [18] GPIO18 (0)
// 0x00020000 [17] GPIO17 (0)
// 0x00010000 [16] GPIO16 (0)
// 0x00008000 [15] GPIO15 (0)
// 0x00004000 [14] GPIO14 (0)
// 0x00002000 [13] GPIO13 (0)
// 0x00001000 [12] GPIO12 (0)
// 0x00000800 [11] GPIO11 (0)
// 0x00000400 [10] GPIO10 (0)
// 0x00000200 [9] GPIO9 (0)
// 0x00000100 [8] GPIO8 (0)
// 0x00000080 [7] GPIO7 (0)
// 0x00000040 [6] GPIO6 (0)
// 0x00000020 [5] GPIO5 (0)
// 0x00000010 [4] GPIO4 (0)
// 0x00000008 [3] GPIO3 (0)
// 0x00000004 [2] GPIO2 (0)
// 0x00000002 [1] GPIO1 (0)
// 0x00000001 [0] GPIO0 (0)
io_ro_32 irqsummary_dormant_wake_secure[2];
// (Description copied from array index 0 register IO_BANK0_IRQSUMMARY_DORMANT_WAKE_NONSECURE0 applies similarly to other array indexes)
_REG_(IO_BANK0_IRQSUMMARY_DORMANT_WAKE_NONSECURE0_OFFSET) // IO_BANK0_IRQSUMMARY_DORMANT_WAKE_NONSECURE0
// 0x80000000 [31] GPIO31 (0)
// 0x40000000 [30] GPIO30 (0)
// 0x20000000 [29] GPIO29 (0)
// 0x10000000 [28] GPIO28 (0)
// 0x08000000 [27] GPIO27 (0)
// 0x04000000 [26] GPIO26 (0)
// 0x02000000 [25] GPIO25 (0)
// 0x01000000 [24] GPIO24 (0)
// 0x00800000 [23] GPIO23 (0)
// 0x00400000 [22] GPIO22 (0)
// 0x00200000 [21] GPIO21 (0)
// 0x00100000 [20] GPIO20 (0)
// 0x00080000 [19] GPIO19 (0)
// 0x00040000 [18] GPIO18 (0)
// 0x00020000 [17] GPIO17 (0)
// 0x00010000 [16] GPIO16 (0)
// 0x00008000 [15] GPIO15 (0)
// 0x00004000 [14] GPIO14 (0)
// 0x00002000 [13] GPIO13 (0)
// 0x00001000 [12] GPIO12 (0)
// 0x00000800 [11] GPIO11 (0)
// 0x00000400 [10] GPIO10 (0)
// 0x00000200 [9] GPIO9 (0)
// 0x00000100 [8] GPIO8 (0)
// 0x00000080 [7] GPIO7 (0)
// 0x00000040 [6] GPIO6 (0)
// 0x00000020 [5] GPIO5 (0)
// 0x00000010 [4] GPIO4 (0)
// 0x00000008 [3] GPIO3 (0)
// 0x00000004 [2] GPIO2 (0)
// 0x00000002 [1] GPIO1 (0)
// 0x00000001 [0] GPIO0 (0)
io_ro_32 irqsummary_dormant_wake_nonsecure[2];
// (Description copied from array index 0 register IO_BANK0_INTR0 applies similarly to other array indexes)
_REG_(IO_BANK0_INTR0_OFFSET) // IO_BANK0_INTR0
// Raw Interrupts
// 0x80000000 [31] GPIO7_EDGE_HIGH (0)
// 0x40000000 [30] GPIO7_EDGE_LOW (0)
// 0x20000000 [29] GPIO7_LEVEL_HIGH (0)
// 0x10000000 [28] GPIO7_LEVEL_LOW (0)
// 0x08000000 [27] GPIO6_EDGE_HIGH (0)
// 0x04000000 [26] GPIO6_EDGE_LOW (0)
// 0x02000000 [25] GPIO6_LEVEL_HIGH (0)
// 0x01000000 [24] GPIO6_LEVEL_LOW (0)
// 0x00800000 [23] GPIO5_EDGE_HIGH (0)
// 0x00400000 [22] GPIO5_EDGE_LOW (0)
// 0x00200000 [21] GPIO5_LEVEL_HIGH (0)
// 0x00100000 [20] GPIO5_LEVEL_LOW (0)
// 0x00080000 [19] GPIO4_EDGE_HIGH (0)
// 0x00040000 [18] GPIO4_EDGE_LOW (0)
// 0x00020000 [17] GPIO4_LEVEL_HIGH (0)
// 0x00010000 [16] GPIO4_LEVEL_LOW (0)
// 0x00008000 [15] GPIO3_EDGE_HIGH (0)
// 0x00004000 [14] GPIO3_EDGE_LOW (0)
// 0x00002000 [13] GPIO3_LEVEL_HIGH (0)
// 0x00001000 [12] GPIO3_LEVEL_LOW (0)
// 0x00000800 [11] GPIO2_EDGE_HIGH (0)
// 0x00000400 [10] GPIO2_EDGE_LOW (0)
// 0x00000200 [9] GPIO2_LEVEL_HIGH (0)
// 0x00000100 [8] GPIO2_LEVEL_LOW (0)
// 0x00000080 [7] GPIO1_EDGE_HIGH (0)
// 0x00000040 [6] GPIO1_EDGE_LOW (0)
// 0x00000020 [5] GPIO1_LEVEL_HIGH (0)
// 0x00000010 [4] GPIO1_LEVEL_LOW (0)
// 0x00000008 [3] GPIO0_EDGE_HIGH (0)
// 0x00000004 [2] GPIO0_EDGE_LOW (0)
// 0x00000002 [1] GPIO0_LEVEL_HIGH (0)
// 0x00000001 [0] GPIO0_LEVEL_LOW (0)
io_rw_32 intr[6];
union {
struct {
io_bank0_irq_ctrl_hw_t proc0_irq_ctrl;
io_bank0_irq_ctrl_hw_t proc1_irq_ctrl;
io_bank0_irq_ctrl_hw_t dormant_wake_irq_ctrl;
};
io_bank0_irq_ctrl_hw_t irq_ctrl[3];
};
} io_bank0_hw_t;
/// \end::io_bank0_hw[]
#define io_bank0_hw ((io_bank0_hw_t *)IO_BANK0_BASE)
static_assert(sizeof (io_bank0_hw_t) == 0x0320, "");
#endif // _HARDWARE_STRUCTS_IO_BANK0_H

View File

@@ -0,0 +1,316 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_IO_QSPI_H
#define _HARDWARE_STRUCTS_IO_QSPI_H
/**
* \file rp2350/io_qspi.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/io_qspi.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_io_qspi
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/io_qspi.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
/**
* \brief QSPI pin function selectors on RP2350 (used as typedef \ref gpio_function1_t)
*/
typedef enum gpio_function1_rp2350 {
GPIO_FUNC1_XIP = 0, ///< Select XIP as QSPI pin function
GPIO_FUNC1_UART = 2, ///< Select UART as QSPI pin function
GPIO_FUNC1_I2C = 3, ///< Select I2C as QSPI pin function
GPIO_FUNC1_SIO = 5, ///< Select SIO as QSPI pin function
GPIO_FUNC1_UART_AUX = 11, ///< Select UART_AUX as QSPI pin function
GPIO_FUNC1_NULL = 0x1f, ///< Select NULL as QSPI pin function
} gpio_function1_t;
typedef struct {
_REG_(IO_QSPI_GPIO_QSPI_SCLK_STATUS_OFFSET) // IO_QSPI_GPIO_QSPI_SCLK_STATUS
// 0x04000000 [26] IRQTOPROC (0) interrupt to processors, after override is applied
// 0x00020000 [17] INFROMPAD (0) input signal from pad, before filtering and override are applied
// 0x00002000 [13] OETOPAD (0) output enable to pad after register override is applied
// 0x00000200 [9] OUTTOPAD (0) output signal to pad after register override is applied
io_ro_32 status;
_REG_(IO_QSPI_GPIO_QSPI_SCLK_CTRL_OFFSET) // IO_QSPI_GPIO_QSPI_SCLK_CTRL
// 0x30000000 [29:28] IRQOVER (0x0)
// 0x00030000 [17:16] INOVER (0x0)
// 0x0000c000 [15:14] OEOVER (0x0)
// 0x00003000 [13:12] OUTOVER (0x0)
// 0x0000001f [4:0] FUNCSEL (0x1f) 0-31 -> selects pin function according to the gpio table +
io_rw_32 ctrl;
} io_qspi_status_ctrl_hw_t;
typedef struct {
_REG_(IO_QSPI_PROC0_INTE_OFFSET) // IO_QSPI_PROC0_INTE
// Interrupt Enable for proc0
// 0x80000000 [31] GPIO_QSPI_SD3_EDGE_HIGH (0)
// 0x40000000 [30] GPIO_QSPI_SD3_EDGE_LOW (0)
// 0x20000000 [29] GPIO_QSPI_SD3_LEVEL_HIGH (0)
// 0x10000000 [28] GPIO_QSPI_SD3_LEVEL_LOW (0)
// 0x08000000 [27] GPIO_QSPI_SD2_EDGE_HIGH (0)
// 0x04000000 [26] GPIO_QSPI_SD2_EDGE_LOW (0)
// 0x02000000 [25] GPIO_QSPI_SD2_LEVEL_HIGH (0)
// 0x01000000 [24] GPIO_QSPI_SD2_LEVEL_LOW (0)
// 0x00800000 [23] GPIO_QSPI_SD1_EDGE_HIGH (0)
// 0x00400000 [22] GPIO_QSPI_SD1_EDGE_LOW (0)
// 0x00200000 [21] GPIO_QSPI_SD1_LEVEL_HIGH (0)
// 0x00100000 [20] GPIO_QSPI_SD1_LEVEL_LOW (0)
// 0x00080000 [19] GPIO_QSPI_SD0_EDGE_HIGH (0)
// 0x00040000 [18] GPIO_QSPI_SD0_EDGE_LOW (0)
// 0x00020000 [17] GPIO_QSPI_SD0_LEVEL_HIGH (0)
// 0x00010000 [16] GPIO_QSPI_SD0_LEVEL_LOW (0)
// 0x00008000 [15] GPIO_QSPI_SS_EDGE_HIGH (0)
// 0x00004000 [14] GPIO_QSPI_SS_EDGE_LOW (0)
// 0x00002000 [13] GPIO_QSPI_SS_LEVEL_HIGH (0)
// 0x00001000 [12] GPIO_QSPI_SS_LEVEL_LOW (0)
// 0x00000800 [11] GPIO_QSPI_SCLK_EDGE_HIGH (0)
// 0x00000400 [10] GPIO_QSPI_SCLK_EDGE_LOW (0)
// 0x00000200 [9] GPIO_QSPI_SCLK_LEVEL_HIGH (0)
// 0x00000100 [8] GPIO_QSPI_SCLK_LEVEL_LOW (0)
// 0x00000080 [7] USBPHY_DM_EDGE_HIGH (0)
// 0x00000040 [6] USBPHY_DM_EDGE_LOW (0)
// 0x00000020 [5] USBPHY_DM_LEVEL_HIGH (0)
// 0x00000010 [4] USBPHY_DM_LEVEL_LOW (0)
// 0x00000008 [3] USBPHY_DP_EDGE_HIGH (0)
// 0x00000004 [2] USBPHY_DP_EDGE_LOW (0)
// 0x00000002 [1] USBPHY_DP_LEVEL_HIGH (0)
// 0x00000001 [0] USBPHY_DP_LEVEL_LOW (0)
io_rw_32 inte;
_REG_(IO_QSPI_PROC0_INTF_OFFSET) // IO_QSPI_PROC0_INTF
// Interrupt Force for proc0
// 0x80000000 [31] GPIO_QSPI_SD3_EDGE_HIGH (0)
// 0x40000000 [30] GPIO_QSPI_SD3_EDGE_LOW (0)
// 0x20000000 [29] GPIO_QSPI_SD3_LEVEL_HIGH (0)
// 0x10000000 [28] GPIO_QSPI_SD3_LEVEL_LOW (0)
// 0x08000000 [27] GPIO_QSPI_SD2_EDGE_HIGH (0)
// 0x04000000 [26] GPIO_QSPI_SD2_EDGE_LOW (0)
// 0x02000000 [25] GPIO_QSPI_SD2_LEVEL_HIGH (0)
// 0x01000000 [24] GPIO_QSPI_SD2_LEVEL_LOW (0)
// 0x00800000 [23] GPIO_QSPI_SD1_EDGE_HIGH (0)
// 0x00400000 [22] GPIO_QSPI_SD1_EDGE_LOW (0)
// 0x00200000 [21] GPIO_QSPI_SD1_LEVEL_HIGH (0)
// 0x00100000 [20] GPIO_QSPI_SD1_LEVEL_LOW (0)
// 0x00080000 [19] GPIO_QSPI_SD0_EDGE_HIGH (0)
// 0x00040000 [18] GPIO_QSPI_SD0_EDGE_LOW (0)
// 0x00020000 [17] GPIO_QSPI_SD0_LEVEL_HIGH (0)
// 0x00010000 [16] GPIO_QSPI_SD0_LEVEL_LOW (0)
// 0x00008000 [15] GPIO_QSPI_SS_EDGE_HIGH (0)
// 0x00004000 [14] GPIO_QSPI_SS_EDGE_LOW (0)
// 0x00002000 [13] GPIO_QSPI_SS_LEVEL_HIGH (0)
// 0x00001000 [12] GPIO_QSPI_SS_LEVEL_LOW (0)
// 0x00000800 [11] GPIO_QSPI_SCLK_EDGE_HIGH (0)
// 0x00000400 [10] GPIO_QSPI_SCLK_EDGE_LOW (0)
// 0x00000200 [9] GPIO_QSPI_SCLK_LEVEL_HIGH (0)
// 0x00000100 [8] GPIO_QSPI_SCLK_LEVEL_LOW (0)
// 0x00000080 [7] USBPHY_DM_EDGE_HIGH (0)
// 0x00000040 [6] USBPHY_DM_EDGE_LOW (0)
// 0x00000020 [5] USBPHY_DM_LEVEL_HIGH (0)
// 0x00000010 [4] USBPHY_DM_LEVEL_LOW (0)
// 0x00000008 [3] USBPHY_DP_EDGE_HIGH (0)
// 0x00000004 [2] USBPHY_DP_EDGE_LOW (0)
// 0x00000002 [1] USBPHY_DP_LEVEL_HIGH (0)
// 0x00000001 [0] USBPHY_DP_LEVEL_LOW (0)
io_rw_32 intf;
_REG_(IO_QSPI_PROC0_INTS_OFFSET) // IO_QSPI_PROC0_INTS
// Interrupt status after masking & forcing for proc0
// 0x80000000 [31] GPIO_QSPI_SD3_EDGE_HIGH (0)
// 0x40000000 [30] GPIO_QSPI_SD3_EDGE_LOW (0)
// 0x20000000 [29] GPIO_QSPI_SD3_LEVEL_HIGH (0)
// 0x10000000 [28] GPIO_QSPI_SD3_LEVEL_LOW (0)
// 0x08000000 [27] GPIO_QSPI_SD2_EDGE_HIGH (0)
// 0x04000000 [26] GPIO_QSPI_SD2_EDGE_LOW (0)
// 0x02000000 [25] GPIO_QSPI_SD2_LEVEL_HIGH (0)
// 0x01000000 [24] GPIO_QSPI_SD2_LEVEL_LOW (0)
// 0x00800000 [23] GPIO_QSPI_SD1_EDGE_HIGH (0)
// 0x00400000 [22] GPIO_QSPI_SD1_EDGE_LOW (0)
// 0x00200000 [21] GPIO_QSPI_SD1_LEVEL_HIGH (0)
// 0x00100000 [20] GPIO_QSPI_SD1_LEVEL_LOW (0)
// 0x00080000 [19] GPIO_QSPI_SD0_EDGE_HIGH (0)
// 0x00040000 [18] GPIO_QSPI_SD0_EDGE_LOW (0)
// 0x00020000 [17] GPIO_QSPI_SD0_LEVEL_HIGH (0)
// 0x00010000 [16] GPIO_QSPI_SD0_LEVEL_LOW (0)
// 0x00008000 [15] GPIO_QSPI_SS_EDGE_HIGH (0)
// 0x00004000 [14] GPIO_QSPI_SS_EDGE_LOW (0)
// 0x00002000 [13] GPIO_QSPI_SS_LEVEL_HIGH (0)
// 0x00001000 [12] GPIO_QSPI_SS_LEVEL_LOW (0)
// 0x00000800 [11] GPIO_QSPI_SCLK_EDGE_HIGH (0)
// 0x00000400 [10] GPIO_QSPI_SCLK_EDGE_LOW (0)
// 0x00000200 [9] GPIO_QSPI_SCLK_LEVEL_HIGH (0)
// 0x00000100 [8] GPIO_QSPI_SCLK_LEVEL_LOW (0)
// 0x00000080 [7] USBPHY_DM_EDGE_HIGH (0)
// 0x00000040 [6] USBPHY_DM_EDGE_LOW (0)
// 0x00000020 [5] USBPHY_DM_LEVEL_HIGH (0)
// 0x00000010 [4] USBPHY_DM_LEVEL_LOW (0)
// 0x00000008 [3] USBPHY_DP_EDGE_HIGH (0)
// 0x00000004 [2] USBPHY_DP_EDGE_LOW (0)
// 0x00000002 [1] USBPHY_DP_LEVEL_HIGH (0)
// 0x00000001 [0] USBPHY_DP_LEVEL_LOW (0)
io_ro_32 ints;
} io_qspi_irq_ctrl_hw_t;
typedef struct {
_REG_(IO_QSPI_USBPHY_DP_STATUS_OFFSET) // IO_QSPI_USBPHY_DP_STATUS
// 0x04000000 [26] IRQTOPROC (0) interrupt to processors, after override is applied
// 0x00020000 [17] INFROMPAD (0) input signal from pad, before filtering and override are applied
// 0x00002000 [13] OETOPAD (0) output enable to pad after register override is applied
// 0x00000200 [9] OUTTOPAD (0) output signal to pad after register override is applied
io_ro_32 usbphy_dp_status;
_REG_(IO_QSPI_USBPHY_DP_CTRL_OFFSET) // IO_QSPI_USBPHY_DP_CTRL
// 0x30000000 [29:28] IRQOVER (0x0)
// 0x00030000 [17:16] INOVER (0x0)
// 0x0000c000 [15:14] OEOVER (0x0)
// 0x00003000 [13:12] OUTOVER (0x0)
// 0x0000001f [4:0] FUNCSEL (0x1f) 0-31 -> selects pin function according to the gpio table +
io_rw_32 usbphy_dp_ctrl;
_REG_(IO_QSPI_USBPHY_DM_STATUS_OFFSET) // IO_QSPI_USBPHY_DM_STATUS
// 0x04000000 [26] IRQTOPROC (0) interrupt to processors, after override is applied
// 0x00020000 [17] INFROMPAD (0) input signal from pad, before filtering and override are applied
// 0x00002000 [13] OETOPAD (0) output enable to pad after register override is applied
// 0x00000200 [9] OUTTOPAD (0) output signal to pad after register override is applied
io_ro_32 usbphy_dm_status;
_REG_(IO_QSPI_USBPHY_DM_CTRL_OFFSET) // IO_QSPI_USBPHY_DM_CTRL
// 0x30000000 [29:28] IRQOVER (0x0)
// 0x00030000 [17:16] INOVER (0x0)
// 0x0000c000 [15:14] OEOVER (0x0)
// 0x00003000 [13:12] OUTOVER (0x0)
// 0x0000001f [4:0] FUNCSEL (0x1f) 0-31 -> selects pin function according to the gpio table +
io_rw_32 usbphy_dm_ctrl;
io_qspi_status_ctrl_hw_t io[6];
uint32_t _pad0[112];
_REG_(IO_QSPI_IRQSUMMARY_PROC0_SECURE_OFFSET) // IO_QSPI_IRQSUMMARY_PROC0_SECURE
// 0x00000080 [7] GPIO_QSPI_SD3 (0)
// 0x00000040 [6] GPIO_QSPI_SD2 (0)
// 0x00000020 [5] GPIO_QSPI_SD1 (0)
// 0x00000010 [4] GPIO_QSPI_SD0 (0)
// 0x00000008 [3] GPIO_QSPI_SS (0)
// 0x00000004 [2] GPIO_QSPI_SCLK (0)
// 0x00000002 [1] USBPHY_DM (0)
// 0x00000001 [0] USBPHY_DP (0)
io_ro_32 irqsummary_proc0_secure;
_REG_(IO_QSPI_IRQSUMMARY_PROC0_NONSECURE_OFFSET) // IO_QSPI_IRQSUMMARY_PROC0_NONSECURE
// 0x00000080 [7] GPIO_QSPI_SD3 (0)
// 0x00000040 [6] GPIO_QSPI_SD2 (0)
// 0x00000020 [5] GPIO_QSPI_SD1 (0)
// 0x00000010 [4] GPIO_QSPI_SD0 (0)
// 0x00000008 [3] GPIO_QSPI_SS (0)
// 0x00000004 [2] GPIO_QSPI_SCLK (0)
// 0x00000002 [1] USBPHY_DM (0)
// 0x00000001 [0] USBPHY_DP (0)
io_ro_32 irqsummary_proc0_nonsecure;
_REG_(IO_QSPI_IRQSUMMARY_PROC1_SECURE_OFFSET) // IO_QSPI_IRQSUMMARY_PROC1_SECURE
// 0x00000080 [7] GPIO_QSPI_SD3 (0)
// 0x00000040 [6] GPIO_QSPI_SD2 (0)
// 0x00000020 [5] GPIO_QSPI_SD1 (0)
// 0x00000010 [4] GPIO_QSPI_SD0 (0)
// 0x00000008 [3] GPIO_QSPI_SS (0)
// 0x00000004 [2] GPIO_QSPI_SCLK (0)
// 0x00000002 [1] USBPHY_DM (0)
// 0x00000001 [0] USBPHY_DP (0)
io_ro_32 irqsummary_proc1_secure;
_REG_(IO_QSPI_IRQSUMMARY_PROC1_NONSECURE_OFFSET) // IO_QSPI_IRQSUMMARY_PROC1_NONSECURE
// 0x00000080 [7] GPIO_QSPI_SD3 (0)
// 0x00000040 [6] GPIO_QSPI_SD2 (0)
// 0x00000020 [5] GPIO_QSPI_SD1 (0)
// 0x00000010 [4] GPIO_QSPI_SD0 (0)
// 0x00000008 [3] GPIO_QSPI_SS (0)
// 0x00000004 [2] GPIO_QSPI_SCLK (0)
// 0x00000002 [1] USBPHY_DM (0)
// 0x00000001 [0] USBPHY_DP (0)
io_ro_32 irqsummary_proc1_nonsecure;
_REG_(IO_QSPI_IRQSUMMARY_DORMANT_WAKE_SECURE_OFFSET) // IO_QSPI_IRQSUMMARY_DORMANT_WAKE_SECURE
// 0x00000080 [7] GPIO_QSPI_SD3 (0)
// 0x00000040 [6] GPIO_QSPI_SD2 (0)
// 0x00000020 [5] GPIO_QSPI_SD1 (0)
// 0x00000010 [4] GPIO_QSPI_SD0 (0)
// 0x00000008 [3] GPIO_QSPI_SS (0)
// 0x00000004 [2] GPIO_QSPI_SCLK (0)
// 0x00000002 [1] USBPHY_DM (0)
// 0x00000001 [0] USBPHY_DP (0)
io_ro_32 irqsummary_dormant_wake_secure;
_REG_(IO_QSPI_IRQSUMMARY_DORMANT_WAKE_NONSECURE_OFFSET) // IO_QSPI_IRQSUMMARY_DORMANT_WAKE_NONSECURE
// 0x00000080 [7] GPIO_QSPI_SD3 (0)
// 0x00000040 [6] GPIO_QSPI_SD2 (0)
// 0x00000020 [5] GPIO_QSPI_SD1 (0)
// 0x00000010 [4] GPIO_QSPI_SD0 (0)
// 0x00000008 [3] GPIO_QSPI_SS (0)
// 0x00000004 [2] GPIO_QSPI_SCLK (0)
// 0x00000002 [1] USBPHY_DM (0)
// 0x00000001 [0] USBPHY_DP (0)
io_ro_32 irqsummary_dormant_wake_nonsecure;
_REG_(IO_QSPI_INTR_OFFSET) // IO_QSPI_INTR
// Raw Interrupts
// 0x80000000 [31] GPIO_QSPI_SD3_EDGE_HIGH (0)
// 0x40000000 [30] GPIO_QSPI_SD3_EDGE_LOW (0)
// 0x20000000 [29] GPIO_QSPI_SD3_LEVEL_HIGH (0)
// 0x10000000 [28] GPIO_QSPI_SD3_LEVEL_LOW (0)
// 0x08000000 [27] GPIO_QSPI_SD2_EDGE_HIGH (0)
// 0x04000000 [26] GPIO_QSPI_SD2_EDGE_LOW (0)
// 0x02000000 [25] GPIO_QSPI_SD2_LEVEL_HIGH (0)
// 0x01000000 [24] GPIO_QSPI_SD2_LEVEL_LOW (0)
// 0x00800000 [23] GPIO_QSPI_SD1_EDGE_HIGH (0)
// 0x00400000 [22] GPIO_QSPI_SD1_EDGE_LOW (0)
// 0x00200000 [21] GPIO_QSPI_SD1_LEVEL_HIGH (0)
// 0x00100000 [20] GPIO_QSPI_SD1_LEVEL_LOW (0)
// 0x00080000 [19] GPIO_QSPI_SD0_EDGE_HIGH (0)
// 0x00040000 [18] GPIO_QSPI_SD0_EDGE_LOW (0)
// 0x00020000 [17] GPIO_QSPI_SD0_LEVEL_HIGH (0)
// 0x00010000 [16] GPIO_QSPI_SD0_LEVEL_LOW (0)
// 0x00008000 [15] GPIO_QSPI_SS_EDGE_HIGH (0)
// 0x00004000 [14] GPIO_QSPI_SS_EDGE_LOW (0)
// 0x00002000 [13] GPIO_QSPI_SS_LEVEL_HIGH (0)
// 0x00001000 [12] GPIO_QSPI_SS_LEVEL_LOW (0)
// 0x00000800 [11] GPIO_QSPI_SCLK_EDGE_HIGH (0)
// 0x00000400 [10] GPIO_QSPI_SCLK_EDGE_LOW (0)
// 0x00000200 [9] GPIO_QSPI_SCLK_LEVEL_HIGH (0)
// 0x00000100 [8] GPIO_QSPI_SCLK_LEVEL_LOW (0)
// 0x00000080 [7] USBPHY_DM_EDGE_HIGH (0)
// 0x00000040 [6] USBPHY_DM_EDGE_LOW (0)
// 0x00000020 [5] USBPHY_DM_LEVEL_HIGH (0)
// 0x00000010 [4] USBPHY_DM_LEVEL_LOW (0)
// 0x00000008 [3] USBPHY_DP_EDGE_HIGH (0)
// 0x00000004 [2] USBPHY_DP_EDGE_LOW (0)
// 0x00000002 [1] USBPHY_DP_LEVEL_HIGH (0)
// 0x00000001 [0] USBPHY_DP_LEVEL_LOW (0)
io_rw_32 intr;
union {
struct {
io_qspi_irq_ctrl_hw_t proc0_irq_ctrl;
io_qspi_irq_ctrl_hw_t proc1_irq_ctrl;
io_qspi_irq_ctrl_hw_t dormant_wake_irq_ctrl;
};
io_qspi_irq_ctrl_hw_t irq_ctrl[3];
};
} io_qspi_hw_t;
#define io_qspi_hw ((io_qspi_hw_t *)IO_QSPI_BASE)
static_assert(sizeof (io_qspi_hw_t) == 0x0240, "");
#endif // _HARDWARE_STRUCTS_IO_QSPI_H

View File

@@ -0,0 +1,9 @@
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
// Support old header for compatibility (and if included, support old variable name)
#include "hardware/structs/io_bank0.h"
#define iobank0_hw io_bank0_hw

View File

@@ -0,0 +1,9 @@
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
// Support old header for compatibility (and if included, support old variable name)
#include "hardware/structs/io_qspi.h"
#define ioqspi_hw io_qspi_hw

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,50 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_M33_EPPB_H
#define _HARDWARE_STRUCTS_M33_EPPB_H
/**
* \file rp2350/m33_eppb.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/m33_eppb.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_m33_eppb
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/m33_eppb.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
#if defined(__riscv) && PICO_FORBID_ARM_HEADERS_ON_RISCV
#error "Arm header included in a RISC-V build with PICO_FORBID_ARM_HEADERS_ON_RISCV=1"
#endif
typedef struct {
// (Description copied from array index 0 register M33_EPPB_NMI_MASK0 applies similarly to other array indexes)
_REG_(M33_EPPB_NMI_MASK0_OFFSET) // M33_EPPB_NMI_MASK0
// NMI mask for IRQs 0 through 31
// 0xffffffff [31:0] NMI_MASK0 (0x00000000)
io_rw_32 nmi_mask[2];
_REG_(M33_EPPB_SLEEPCTRL_OFFSET) // M33_EPPB_SLEEPCTRL
// Nonstandard sleep control register
// 0x00000004 [2] WICENACK (0) Status signal from the processor's interrupt controller
// 0x00000002 [1] WICENREQ (1) Request that the next processor deep sleep is a WIC sleep
// 0x00000001 [0] LIGHT_SLEEP (0) By default, any processor sleep will deassert the...
io_rw_32 sleepctrl;
} m33_eppb_hw_t;
#define eppb_hw ((m33_eppb_hw_t *)EPPB_BASE)
static_assert(sizeof (m33_eppb_hw_t) == 0x000c, "");
#endif // _HARDWARE_STRUCTS_M33_EPPB_H

View File

@@ -0,0 +1,126 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_MPU_H
#define _HARDWARE_STRUCTS_MPU_H
/**
* \file rp2350/mpu.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/m33.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_m33
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/m33.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
#if defined(__riscv) && PICO_FORBID_ARM_HEADERS_ON_RISCV
#error "Arm header included in a RISC-V build with PICO_FORBID_ARM_HEADERS_ON_RISCV=1"
#endif
typedef struct {
_REG_(M33_MPU_TYPE_OFFSET) // M33_MPU_TYPE
// The MPU Type Register indicates how many regions the MPU `FTSSS supports
// 0x0000ff00 [15:8] DREGION (0x08) Number of regions supported by the MPU
// 0x00000001 [0] SEPARATE (0) Indicates support for separate instructions and data...
io_ro_32 type;
_REG_(M33_MPU_CTRL_OFFSET) // M33_MPU_CTRL
// Enables the MPU and, when the MPU is enabled, controls whether the default memory map is enabled...
// 0x00000004 [2] PRIVDEFENA (0) Controls whether the default memory map is enabled for...
// 0x00000002 [1] HFNMIENA (0) Controls whether handlers executing with priority less...
// 0x00000001 [0] ENABLE (0) Enables the MPU
io_rw_32 ctrl;
_REG_(M33_MPU_RNR_OFFSET) // M33_MPU_RNR
// Selects the region currently accessed by MPU_RBAR and MPU_RLAR
// 0x00000007 [2:0] REGION (0x0) Indicates the memory region accessed by MPU_RBAR and MPU_RLAR
io_rw_32 rnr;
_REG_(M33_MPU_RBAR_OFFSET) // M33_MPU_RBAR
// Provides indirect read and write access to the base address of the currently selected MPU region `FTSSS
// 0xffffffe0 [31:5] BASE (0x0000000) Contains bits [31:5] of the lower inclusive limit of the...
// 0x00000018 [4:3] SH (0x0) Defines the Shareability domain of this region for Normal memory
// 0x00000006 [2:1] AP (0x0) Defines the access permissions for this region
// 0x00000001 [0] XN (0) Defines whether code can be executed from this region
io_rw_32 rbar;
_REG_(M33_MPU_RLAR_OFFSET) // M33_MPU_RLAR
// Provides indirect read and write access to the limit address of the currently selected MPU region `FTSSS
// 0xffffffe0 [31:5] LIMIT (0x0000000) Contains bits [31:5] of the upper inclusive limit of the...
// 0x0000000e [3:1] ATTRINDX (0x0) Associates a set of attributes in the MPU_MAIR0 and...
// 0x00000001 [0] EN (0) Region enable
io_rw_32 rlar;
_REG_(M33_MPU_RBAR_A1_OFFSET) // M33_MPU_RBAR_A1
// Provides indirect read and write access to the base address of the MPU region selected by...
// 0xffffffe0 [31:5] BASE (0x0000000) Contains bits [31:5] of the lower inclusive limit of the...
// 0x00000018 [4:3] SH (0x0) Defines the Shareability domain of this region for Normal memory
// 0x00000006 [2:1] AP (0x0) Defines the access permissions for this region
// 0x00000001 [0] XN (0) Defines whether code can be executed from this region
io_rw_32 rbar_a1;
_REG_(M33_MPU_RLAR_A1_OFFSET) // M33_MPU_RLAR_A1
// Provides indirect read and write access to the limit address of the currently selected MPU...
// 0xffffffe0 [31:5] LIMIT (0x0000000) Contains bits [31:5] of the upper inclusive limit of the...
// 0x0000000e [3:1] ATTRINDX (0x0) Associates a set of attributes in the MPU_MAIR0 and...
// 0x00000001 [0] EN (0) Region enable
io_rw_32 rlar_a1;
_REG_(M33_MPU_RBAR_A2_OFFSET) // M33_MPU_RBAR_A2
// Provides indirect read and write access to the base address of the MPU region selected by...
// 0xffffffe0 [31:5] BASE (0x0000000) Contains bits [31:5] of the lower inclusive limit of the...
// 0x00000018 [4:3] SH (0x0) Defines the Shareability domain of this region for Normal memory
// 0x00000006 [2:1] AP (0x0) Defines the access permissions for this region
// 0x00000001 [0] XN (0) Defines whether code can be executed from this region
io_rw_32 rbar_a2;
_REG_(M33_MPU_RLAR_A2_OFFSET) // M33_MPU_RLAR_A2
// Provides indirect read and write access to the limit address of the currently selected MPU...
// 0xffffffe0 [31:5] LIMIT (0x0000000) Contains bits [31:5] of the upper inclusive limit of the...
// 0x0000000e [3:1] ATTRINDX (0x0) Associates a set of attributes in the MPU_MAIR0 and...
// 0x00000001 [0] EN (0) Region enable
io_rw_32 rlar_a2;
_REG_(M33_MPU_RBAR_A3_OFFSET) // M33_MPU_RBAR_A3
// Provides indirect read and write access to the base address of the MPU region selected by...
// 0xffffffe0 [31:5] BASE (0x0000000) Contains bits [31:5] of the lower inclusive limit of the...
// 0x00000018 [4:3] SH (0x0) Defines the Shareability domain of this region for Normal memory
// 0x00000006 [2:1] AP (0x0) Defines the access permissions for this region
// 0x00000001 [0] XN (0) Defines whether code can be executed from this region
io_rw_32 rbar_a3;
_REG_(M33_MPU_RLAR_A3_OFFSET) // M33_MPU_RLAR_A3
// Provides indirect read and write access to the limit address of the currently selected MPU...
// 0xffffffe0 [31:5] LIMIT (0x0000000) Contains bits [31:5] of the upper inclusive limit of the...
// 0x0000000e [3:1] ATTRINDX (0x0) Associates a set of attributes in the MPU_MAIR0 and...
// 0x00000001 [0] EN (0) Region enable
io_rw_32 rlar_a3;
uint32_t _pad0;
// (Description copied from array index 0 register M33_MPU_MAIR0 applies similarly to other array indexes)
_REG_(M33_MPU_MAIR0_OFFSET) // M33_MPU_MAIR0
// Along with MPU_MAIR1, provides the memory attribute encodings corresponding to the AttrIndex values
// 0xff000000 [31:24] ATTR3 (0x00) Memory attribute encoding for MPU regions with an AttrIndex of 3
// 0x00ff0000 [23:16] ATTR2 (0x00) Memory attribute encoding for MPU regions with an AttrIndex of 2
// 0x0000ff00 [15:8] ATTR1 (0x00) Memory attribute encoding for MPU regions with an AttrIndex of 1
// 0x000000ff [7:0] ATTR0 (0x00) Memory attribute encoding for MPU regions with an AttrIndex of 0
io_rw_32 mair[2];
} mpu_hw_t;
#define mpu_hw ((mpu_hw_t *)(PPB_BASE + M33_MPU_TYPE_OFFSET))
#define mpu_ns_hw ((mpu_hw_t *)(PPB_NONSEC_BASE + M33_MPU_TYPE_OFFSET))
static_assert(sizeof (mpu_hw_t) == 0x0038, "");
#endif // _HARDWARE_STRUCTS_MPU_H

View File

@@ -0,0 +1,94 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_NVIC_H
#define _HARDWARE_STRUCTS_NVIC_H
/**
* \file rp2350/nvic.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/m33.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_m33
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/m33.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
#if defined(__riscv) && PICO_FORBID_ARM_HEADERS_ON_RISCV
#error "Arm header included in a RISC-V build with PICO_FORBID_ARM_HEADERS_ON_RISCV=1"
#endif
typedef struct {
// (Description copied from array index 0 register M33_NVIC_ISER0 applies similarly to other array indexes)
_REG_(M33_NVIC_ISER0_OFFSET) // M33_NVIC_ISER0
// Enables or reads the enabled state of each group of 32 interrupts
// 0xffffffff [31:0] SETENA (0x00000000) For SETENA[m] in NVIC_ISER*n, indicates whether...
io_rw_32 iser[2];
uint32_t _pad0[30];
// (Description copied from array index 0 register M33_NVIC_ICER0 applies similarly to other array indexes)
_REG_(M33_NVIC_ICER0_OFFSET) // M33_NVIC_ICER0
// Clears or reads the enabled state of each group of 32 interrupts
// 0xffffffff [31:0] CLRENA (0x00000000) For CLRENA[m] in NVIC_ICER*n, indicates whether...
io_rw_32 icer[2];
uint32_t _pad1[30];
// (Description copied from array index 0 register M33_NVIC_ISPR0 applies similarly to other array indexes)
_REG_(M33_NVIC_ISPR0_OFFSET) // M33_NVIC_ISPR0
// Enables or reads the pending state of each group of 32 interrupts
// 0xffffffff [31:0] SETPEND (0x00000000) For SETPEND[m] in NVIC_ISPR*n, indicates whether...
io_rw_32 ispr[2];
uint32_t _pad2[30];
// (Description copied from array index 0 register M33_NVIC_ICPR0 applies similarly to other array indexes)
_REG_(M33_NVIC_ICPR0_OFFSET) // M33_NVIC_ICPR0
// Clears or reads the pending state of each group of 32 interrupts
// 0xffffffff [31:0] CLRPEND (0x00000000) For CLRPEND[m] in NVIC_ICPR*n, indicates whether...
io_rw_32 icpr[2];
uint32_t _pad3[30];
// (Description copied from array index 0 register M33_NVIC_IABR0 applies similarly to other array indexes)
_REG_(M33_NVIC_IABR0_OFFSET) // M33_NVIC_IABR0
// For each group of 32 interrupts, shows the active state of each interrupt
// 0xffffffff [31:0] ACTIVE (0x00000000) For ACTIVE[m] in NVIC_IABR*n, indicates the active state...
io_rw_32 iabr[2];
uint32_t _pad4[30];
// (Description copied from array index 0 register M33_NVIC_ITNS0 applies similarly to other array indexes)
_REG_(M33_NVIC_ITNS0_OFFSET) // M33_NVIC_ITNS0
// For each group of 32 interrupts, determines whether each interrupt targets Non-secure or Secure state
// 0xffffffff [31:0] ITNS (0x00000000) For ITNS[m] in NVIC_ITNS*n, `IAAMO the target Security...
io_rw_32 itns[2];
uint32_t _pad5[30];
// (Description copied from array index 0 register M33_NVIC_IPR0 applies similarly to other array indexes)
_REG_(M33_NVIC_IPR0_OFFSET) // M33_NVIC_IPR0
// Sets or reads interrupt priorities
// 0xf0000000 [31:28] PRI_N3 (0x0) For register NVIC_IPRn, the priority of interrupt number...
// 0x00f00000 [23:20] PRI_N2 (0x0) For register NVIC_IPRn, the priority of interrupt number...
// 0x0000f000 [15:12] PRI_N1 (0x0) For register NVIC_IPRn, the priority of interrupt number...
// 0x000000f0 [7:4] PRI_N0 (0x0) For register NVIC_IPRn, the priority of interrupt number...
io_rw_32 ipr[16];
} nvic_hw_t;
#define nvic_hw ((nvic_hw_t *)(PPB_BASE + M33_NVIC_ISER0_OFFSET))
#define nvic_ns_hw ((nvic_hw_t *)(PPB_NONSEC_BASE + M33_NVIC_ISER0_OFFSET))
static_assert(sizeof (nvic_hw_t) == 0x0340, "");
#endif // _HARDWARE_STRUCTS_NVIC_H

View File

@@ -0,0 +1,192 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_OTP_H
#define _HARDWARE_STRUCTS_OTP_H
/**
* \file rp2350/otp.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/otp.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_otp
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/otp.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
// (Description copied from array index 0 register OTP_SW_LOCK0 applies similarly to other array indexes)
_REG_(OTP_SW_LOCK0_OFFSET) // OTP_SW_LOCK0
// Software lock register for page 0.
// 0x0000000c [3:2] NSEC (-) Non-secure lock status
// 0x00000003 [1:0] SEC (-) Secure lock status
io_rw_32 sw_lock[64];
_REG_(OTP_SBPI_INSTR_OFFSET) // OTP_SBPI_INSTR
// Dispatch instructions to the SBPI interface, used for programming the OTP fuses
// 0x40000000 [30] EXEC (0) Execute instruction
// 0x20000000 [29] IS_WR (0) Payload type is write
// 0x10000000 [28] HAS_PAYLOAD (0) Instruction has payload (data to be written or to be read)
// 0x0f000000 [27:24] PAYLOAD_SIZE_M1 (0x0) Instruction payload size in bytes minus 1
// 0x00ff0000 [23:16] TARGET (0x00) Instruction target, it can be PMC (0x3a) or DAP (0x02)
// 0x0000ff00 [15:8] CMD (0x00)
// 0x000000ff [7:0] SHORT_WDATA (0x00) wdata to be used only when payload_size_m1=0
io_rw_32 sbpi_instr;
// (Description copied from array index 0 register OTP_SBPI_WDATA_0 applies similarly to other array indexes)
_REG_(OTP_SBPI_WDATA_0_OFFSET) // OTP_SBPI_WDATA_0
// SBPI write payload bytes 3
// 0xffffffff [31:0] SBPI_WDATA_0 (0x00000000)
io_rw_32 sbpi_wdata[4];
// (Description copied from array index 0 register OTP_SBPI_RDATA_0 applies similarly to other array indexes)
_REG_(OTP_SBPI_RDATA_0_OFFSET) // OTP_SBPI_RDATA_0
// Read payload bytes 3
// 0xffffffff [31:0] SBPI_RDATA_0 (0x00000000)
io_ro_32 sbpi_rdata[4];
_REG_(OTP_SBPI_STATUS_OFFSET) // OTP_SBPI_STATUS
// 0x00ff0000 [23:16] MISO (-) SBPI MISO (master in - slave out): response from SBPI
// 0x00001000 [12] FLAG (-) SBPI flag
// 0x00000100 [8] INSTR_MISS (0) Last instruction missed (dropped), as the previous has...
// 0x00000010 [4] INSTR_DONE (0) Last instruction done
// 0x00000001 [0] RDATA_VLD (0) Read command has returned data
io_rw_32 sbpi_status;
_REG_(OTP_USR_OFFSET) // OTP_USR
// Controls for APB data read interface (USER interface)
// 0x00000010 [4] PD (0) Power-down; 1 disables current reference
// 0x00000001 [0] DCTRL (1) 1 enables USER interface; 0 disables USER interface...
io_rw_32 usr;
_REG_(OTP_DBG_OFFSET) // OTP_DBG
// Debug for OTP power-on state machine
// 0x00001000 [12] CUSTOMER_RMA_FLAG (-) The chip is in RMA mode
// 0x000000f0 [7:4] PSM_STATE (-) Monitor the PSM FSM's state
// 0x00000008 [3] ROSC_UP (-) Ring oscillator is up and running
// 0x00000004 [2] ROSC_UP_SEEN (0) Ring oscillator was seen up and running
// 0x00000002 [1] BOOT_DONE (-) PSM boot done status flag
// 0x00000001 [0] PSM_DONE (-) PSM done status flag
io_rw_32 dbg;
uint32_t _pad0;
_REG_(OTP_BIST_OFFSET) // OTP_BIST
// During BIST, count address locations that have at least one leaky bit
// 0x40000000 [30] CNT_FAIL (-) Flag if the count of address locations with at least one...
// 0x20000000 [29] CNT_CLR (0) Clear counter before use
// 0x10000000 [28] CNT_ENA (0) Enable the counter before the BIST function is initiated
// 0x0fff0000 [27:16] CNT_MAX (0xfff) The cnt_fail flag will be set if the number of leaky...
// 0x00001fff [12:0] CNT (-) Number of locations that have at least one leaky bit
io_rw_32 bist;
// (Description copied from array index 0 register OTP_CRT_KEY_W0 applies similarly to other array indexes)
_REG_(OTP_CRT_KEY_W0_OFFSET) // OTP_CRT_KEY_W0
// Word 0 (bits 31
// 0xffffffff [31:0] CRT_KEY_W0 (0x00000000)
io_wo_32 crt_key_w[4];
_REG_(OTP_CRITICAL_OFFSET) // OTP_CRITICAL
// Quickly check values of critical flags read during boot up
// 0x00020000 [17] RISCV_DISABLE (0)
// 0x00010000 [16] ARM_DISABLE (0)
// 0x00000060 [6:5] GLITCH_DETECTOR_SENS (0x0)
// 0x00000010 [4] GLITCH_DETECTOR_ENABLE (0)
// 0x00000008 [3] DEFAULT_ARCHSEL (0)
// 0x00000004 [2] DEBUG_DISABLE (0)
// 0x00000002 [1] SECURE_DEBUG_DISABLE (0)
// 0x00000001 [0] SECURE_BOOT_ENABLE (0)
io_ro_32 critical;
_REG_(OTP_KEY_VALID_OFFSET) // OTP_KEY_VALID
// Which keys were valid (enrolled) at boot time
// 0x000000ff [7:0] KEY_VALID (0x00)
io_ro_32 key_valid;
_REG_(OTP_DEBUGEN_OFFSET) // OTP_DEBUGEN
// Enable a debug feature that has been disabled. Debug features are disabled if one of the relevant critical boot flags is set in OTP (DEBUG_DISABLE or SECURE_DEBUG_DISABLE), OR if a debug key is marked valid in OTP, and the matching key value has not been supplied over SWD.
// 0x00000100 [8] MISC (0) Enable other debug components
// 0x00000008 [3] PROC1_SECURE (0) Permit core 1's Mem-AP to generate Secure accesses,...
// 0x00000004 [2] PROC1 (0) Enable core 1's Mem-AP if it is currently disabled
// 0x00000002 [1] PROC0_SECURE (0) Permit core 0's Mem-AP to generate Secure accesses,...
// 0x00000001 [0] PROC0 (0) Enable core 0's Mem-AP if it is currently disabled
io_rw_32 debugen;
_REG_(OTP_DEBUGEN_LOCK_OFFSET) // OTP_DEBUGEN_LOCK
// Write 1s to lock corresponding bits in DEBUGEN
// 0x00000100 [8] MISC (0) Write 1 to lock the MISC bit of DEBUGEN
// 0x00000008 [3] PROC1_SECURE (0) Write 1 to lock the PROC1_SECURE bit of DEBUGEN
// 0x00000004 [2] PROC1 (0) Write 1 to lock the PROC1 bit of DEBUGEN
// 0x00000002 [1] PROC0_SECURE (0) Write 1 to lock the PROC0_SECURE bit of DEBUGEN
// 0x00000001 [0] PROC0 (0) Write 1 to lock the PROC0 bit of DEBUGEN
io_rw_32 debugen_lock;
_REG_(OTP_ARCHSEL_OFFSET) // OTP_ARCHSEL
// Architecture select (Arm/RISC-V), applied on next processor reset. The default and allowable values of this register are constrained by the critical boot flags.
// 0x00000002 [1] CORE1 (0) Select architecture for core 1
// 0x00000001 [0] CORE0 (0) Select architecture for core 0
io_rw_32 archsel;
_REG_(OTP_ARCHSEL_STATUS_OFFSET) // OTP_ARCHSEL_STATUS
// Get the current architecture select state of each core
// 0x00000002 [1] CORE1 (0) Current architecture for core 0
// 0x00000001 [0] CORE0 (0) Current architecture for core 0
io_ro_32 archsel_status;
_REG_(OTP_BOOTDIS_OFFSET) // OTP_BOOTDIS
// Tell the bootrom to ignore scratch register boot vectors (both power manager and watchdog) on the next power up.
// 0x00000002 [1] NEXT (0) This flag always ORs writes into its current contents
// 0x00000001 [0] NOW (0) When the core is powered down, the current value of...
io_rw_32 bootdis;
_REG_(OTP_INTR_OFFSET) // OTP_INTR
// Raw Interrupts
// 0x00000010 [4] APB_RD_NSEC_FAIL (0)
// 0x00000008 [3] APB_RD_SEC_FAIL (0)
// 0x00000004 [2] APB_DCTRL_FAIL (0)
// 0x00000002 [1] SBPI_WR_FAIL (0)
// 0x00000001 [0] SBPI_FLAG_N (0)
io_rw_32 intr;
_REG_(OTP_INTE_OFFSET) // OTP_INTE
// Interrupt Enable
// 0x00000010 [4] APB_RD_NSEC_FAIL (0)
// 0x00000008 [3] APB_RD_SEC_FAIL (0)
// 0x00000004 [2] APB_DCTRL_FAIL (0)
// 0x00000002 [1] SBPI_WR_FAIL (0)
// 0x00000001 [0] SBPI_FLAG_N (0)
io_rw_32 inte;
_REG_(OTP_INTF_OFFSET) // OTP_INTF
// Interrupt Force
// 0x00000010 [4] APB_RD_NSEC_FAIL (0)
// 0x00000008 [3] APB_RD_SEC_FAIL (0)
// 0x00000004 [2] APB_DCTRL_FAIL (0)
// 0x00000002 [1] SBPI_WR_FAIL (0)
// 0x00000001 [0] SBPI_FLAG_N (0)
io_rw_32 intf;
_REG_(OTP_INTS_OFFSET) // OTP_INTS
// Interrupt status after masking & forcing
// 0x00000010 [4] APB_RD_NSEC_FAIL (0)
// 0x00000008 [3] APB_RD_SEC_FAIL (0)
// 0x00000004 [2] APB_DCTRL_FAIL (0)
// 0x00000002 [1] SBPI_WR_FAIL (0)
// 0x00000001 [0] SBPI_FLAG_N (0)
io_ro_32 ints;
} otp_hw_t;
#define otp_hw ((otp_hw_t *)OTP_BASE)
static_assert(sizeof (otp_hw_t) == 0x0174, "");
#endif // _HARDWARE_STRUCTS_OTP_H

View File

@@ -0,0 +1,49 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_PADS_BANK0_H
#define _HARDWARE_STRUCTS_PADS_BANK0_H
/**
* \file rp2350/pads_bank0.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/pads_bank0.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_pads_bank0
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pads_bank0.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(PADS_BANK0_VOLTAGE_SELECT_OFFSET) // PADS_BANK0_VOLTAGE_SELECT
// Voltage select
// 0x00000001 [0] VOLTAGE_SELECT (0)
io_rw_32 voltage_select;
// (Description copied from array index 0 register PADS_BANK0_GPIO0 applies similarly to other array indexes)
_REG_(PADS_BANK0_GPIO0_OFFSET) // PADS_BANK0_GPIO0
// 0x00000100 [8] ISO (1) Pad isolation control
// 0x00000080 [7] OD (0) Output disable
// 0x00000040 [6] IE (0) Input enable
// 0x00000030 [5:4] DRIVE (0x1) Drive strength
// 0x00000008 [3] PUE (0) Pull up enable
// 0x00000004 [2] PDE (1) Pull down enable
// 0x00000002 [1] SCHMITT (1) Enable schmitt trigger
// 0x00000001 [0] SLEWFAST (0) Slew rate control
io_rw_32 io[48];
} pads_bank0_hw_t;
#define pads_bank0_hw ((pads_bank0_hw_t *)PADS_BANK0_BASE)
static_assert(sizeof (pads_bank0_hw_t) == 0x00c4, "");
#endif // _HARDWARE_STRUCTS_PADS_BANK0_H

View File

@@ -0,0 +1,49 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_PADS_QSPI_H
#define _HARDWARE_STRUCTS_PADS_QSPI_H
/**
* \file rp2350/pads_qspi.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/pads_qspi.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_pads_qspi
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pads_qspi.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(PADS_QSPI_VOLTAGE_SELECT_OFFSET) // PADS_QSPI_VOLTAGE_SELECT
// Voltage select
// 0x00000001 [0] VOLTAGE_SELECT (0)
io_rw_32 voltage_select;
// (Description copied from array index 0 register PADS_QSPI_GPIO_QSPI_SCLK applies similarly to other array indexes)
_REG_(PADS_QSPI_GPIO_QSPI_SCLK_OFFSET) // PADS_QSPI_GPIO_QSPI_SCLK
// 0x00000100 [8] ISO (1) Pad isolation control
// 0x00000080 [7] OD (0) Output disable
// 0x00000040 [6] IE (1) Input enable
// 0x00000030 [5:4] DRIVE (0x1) Drive strength
// 0x00000008 [3] PUE (0) Pull up enable
// 0x00000004 [2] PDE (1) Pull down enable
// 0x00000002 [1] SCHMITT (1) Enable schmitt trigger
// 0x00000001 [0] SLEWFAST (0) Slew rate control
io_rw_32 io[6];
} pads_qspi_hw_t;
#define pads_qspi_hw ((pads_qspi_hw_t *)PADS_QSPI_BASE)
static_assert(sizeof (pads_qspi_hw_t) == 0x001c, "");
#endif // _HARDWARE_STRUCTS_PADS_QSPI_H

View File

@@ -0,0 +1,9 @@
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
// Support old header for compatibility (and if included, support old variable name)
#include "hardware/structs/pads_bank0.h"
#define padsbank0_hw pads_bank0_hw

View File

@@ -0,0 +1,380 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_PIO_H
#define _HARDWARE_STRUCTS_PIO_H
/**
* \file rp2350/pio.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/pio.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_pio
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pio.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(PIO_SM0_CLKDIV_OFFSET) // PIO_SM0_CLKDIV
// Clock divisor register for state machine 0 +
// 0xffff0000 [31:16] INT (0x0001) Effective frequency is sysclk/(int + frac/256)
// 0x0000ff00 [15:8] FRAC (0x00) Fractional part of clock divisor
io_rw_32 clkdiv;
_REG_(PIO_SM0_EXECCTRL_OFFSET) // PIO_SM0_EXECCTRL
// Execution/behavioural settings for state machine 0
// 0x80000000 [31] EXEC_STALLED (0) If 1, an instruction written to SMx_INSTR is stalled,...
// 0x40000000 [30] SIDE_EN (0) If 1, the MSB of the Delay/Side-set instruction field is...
// 0x20000000 [29] SIDE_PINDIR (0) If 1, side-set data is asserted to pin directions,...
// 0x1f000000 [28:24] JMP_PIN (0x00) The GPIO number to use as condition for JMP PIN
// 0x00f80000 [23:19] OUT_EN_SEL (0x00) Which data bit to use for inline OUT enable
// 0x00040000 [18] INLINE_OUT_EN (0) If 1, use a bit of OUT data as an auxiliary write enable +
// 0x00020000 [17] OUT_STICKY (0) Continuously assert the most recent OUT/SET to the pins
// 0x0001f000 [16:12] WRAP_TOP (0x1f) After reaching this address, execution is wrapped to wrap_bottom
// 0x00000f80 [11:7] WRAP_BOTTOM (0x00) After reaching wrap_top, execution is wrapped to this address
// 0x00000060 [6:5] STATUS_SEL (0x0) Comparison used for the MOV x, STATUS instruction
// 0x0000001f [4:0] STATUS_N (0x00) Comparison level or IRQ index for the MOV x, STATUS instruction
io_rw_32 execctrl;
_REG_(PIO_SM0_SHIFTCTRL_OFFSET) // PIO_SM0_SHIFTCTRL
// Control behaviour of the input/output shift registers for state machine 0
// 0x80000000 [31] FJOIN_RX (0) When 1, RX FIFO steals the TX FIFO's storage, and...
// 0x40000000 [30] FJOIN_TX (0) When 1, TX FIFO steals the RX FIFO's storage, and...
// 0x3e000000 [29:25] PULL_THRESH (0x00) Number of bits shifted out of OSR before autopull, or...
// 0x01f00000 [24:20] PUSH_THRESH (0x00) Number of bits shifted into ISR before autopush, or...
// 0x00080000 [19] OUT_SHIFTDIR (1) 1 = shift out of output shift register to right
// 0x00040000 [18] IN_SHIFTDIR (1) 1 = shift input shift register to right (data enters from left)
// 0x00020000 [17] AUTOPULL (0) Pull automatically when the output shift register is emptied, i
// 0x00010000 [16] AUTOPUSH (0) Push automatically when the input shift register is filled, i
// 0x00008000 [15] FJOIN_RX_PUT (0) If 1, disable this state machine's RX FIFO, make its...
// 0x00004000 [14] FJOIN_RX_GET (0) If 1, disable this state machine's RX FIFO, make its...
// 0x0000001f [4:0] IN_COUNT (0x00) Set the number of pins which are not masked to 0 when...
io_rw_32 shiftctrl;
_REG_(PIO_SM0_ADDR_OFFSET) // PIO_SM0_ADDR
// Current instruction address of state machine 0
// 0x0000001f [4:0] SM0_ADDR (0x00)
io_ro_32 addr;
_REG_(PIO_SM0_INSTR_OFFSET) // PIO_SM0_INSTR
// Read to see the instruction currently addressed by state machine 0's program counter +
// 0x0000ffff [15:0] SM0_INSTR (-)
io_rw_32 instr;
_REG_(PIO_SM0_PINCTRL_OFFSET) // PIO_SM0_PINCTRL
// State machine pin control
// 0xe0000000 [31:29] SIDESET_COUNT (0x0) The number of MSBs of the Delay/Side-set instruction...
// 0x1c000000 [28:26] SET_COUNT (0x5) The number of pins asserted by a SET
// 0x03f00000 [25:20] OUT_COUNT (0x00) The number of pins asserted by an OUT PINS, OUT PINDIRS...
// 0x000f8000 [19:15] IN_BASE (0x00) The pin which is mapped to the least-significant bit of...
// 0x00007c00 [14:10] SIDESET_BASE (0x00) The lowest-numbered pin that will be affected by a...
// 0x000003e0 [9:5] SET_BASE (0x00) The lowest-numbered pin that will be affected by a SET...
// 0x0000001f [4:0] OUT_BASE (0x00) The lowest-numbered pin that will be affected by an OUT...
io_rw_32 pinctrl;
} pio_sm_hw_t;
typedef struct {
_REG_(PIO_IRQ0_INTE_OFFSET) // PIO_IRQ0_INTE
// Interrupt Enable for irq0
// 0x00008000 [15] SM7 (0)
// 0x00004000 [14] SM6 (0)
// 0x00002000 [13] SM5 (0)
// 0x00001000 [12] SM4 (0)
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 inte;
_REG_(PIO_IRQ0_INTF_OFFSET) // PIO_IRQ0_INTF
// Interrupt Force for irq0
// 0x00008000 [15] SM7 (0)
// 0x00004000 [14] SM6 (0)
// 0x00002000 [13] SM5 (0)
// 0x00001000 [12] SM4 (0)
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 intf;
_REG_(PIO_IRQ0_INTS_OFFSET) // PIO_IRQ0_INTS
// Interrupt status after masking & forcing for irq0
// 0x00008000 [15] SM7 (0)
// 0x00004000 [14] SM6 (0)
// 0x00002000 [13] SM5 (0)
// 0x00001000 [12] SM4 (0)
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_ro_32 ints;
} pio_irq_ctrl_hw_t;
typedef struct {
_REG_(PIO_CTRL_OFFSET) // PIO_CTRL
// PIO control register
// 0x04000000 [26] NEXTPREV_CLKDIV_RESTART (0) Write 1 to restart the clock dividers of state machines...
// 0x02000000 [25] NEXTPREV_SM_DISABLE (0) Write 1 to disable state machines in neighbouring PIO...
// 0x01000000 [24] NEXTPREV_SM_ENABLE (0) Write 1 to enable state machines in neighbouring PIO...
// 0x00f00000 [23:20] NEXT_PIO_MASK (0x0) A mask of state machines in the neighbouring...
// 0x000f0000 [19:16] PREV_PIO_MASK (0x0) A mask of state machines in the neighbouring...
// 0x00000f00 [11:8] CLKDIV_RESTART (0x0) Restart a state machine's clock divider from an initial...
// 0x000000f0 [7:4] SM_RESTART (0x0) Write 1 to instantly clear internal SM state which may...
// 0x0000000f [3:0] SM_ENABLE (0x0) Enable/disable each of the four state machines by...
io_rw_32 ctrl;
_REG_(PIO_FSTAT_OFFSET) // PIO_FSTAT
// FIFO status register
// 0x0f000000 [27:24] TXEMPTY (0xf) State machine TX FIFO is empty
// 0x000f0000 [19:16] TXFULL (0x0) State machine TX FIFO is full
// 0x00000f00 [11:8] RXEMPTY (0xf) State machine RX FIFO is empty
// 0x0000000f [3:0] RXFULL (0x0) State machine RX FIFO is full
io_ro_32 fstat;
_REG_(PIO_FDEBUG_OFFSET) // PIO_FDEBUG
// FIFO debug register
// 0x0f000000 [27:24] TXSTALL (0x0) State machine has stalled on empty TX FIFO during a...
// 0x000f0000 [19:16] TXOVER (0x0) TX FIFO overflow (i
// 0x00000f00 [11:8] RXUNDER (0x0) RX FIFO underflow (i
// 0x0000000f [3:0] RXSTALL (0x0) State machine has stalled on full RX FIFO during a...
io_rw_32 fdebug;
_REG_(PIO_FLEVEL_OFFSET) // PIO_FLEVEL
// FIFO levels
// 0xf0000000 [31:28] RX3 (0x0)
// 0x0f000000 [27:24] TX3 (0x0)
// 0x00f00000 [23:20] RX2 (0x0)
// 0x000f0000 [19:16] TX2 (0x0)
// 0x0000f000 [15:12] RX1 (0x0)
// 0x00000f00 [11:8] TX1 (0x0)
// 0x000000f0 [7:4] RX0 (0x0)
// 0x0000000f [3:0] TX0 (0x0)
io_ro_32 flevel;
// (Description copied from array index 0 register PIO_TXF0 applies similarly to other array indexes)
_REG_(PIO_TXF0_OFFSET) // PIO_TXF0
// Direct write access to the TX FIFO for this state machine
// 0xffffffff [31:0] TXF0 (0x00000000)
io_wo_32 txf[4];
// (Description copied from array index 0 register PIO_RXF0 applies similarly to other array indexes)
_REG_(PIO_RXF0_OFFSET) // PIO_RXF0
// Direct read access to the RX FIFO for this state machine
// 0xffffffff [31:0] RXF0 (-)
io_ro_32 rxf[4];
_REG_(PIO_IRQ_OFFSET) // PIO_IRQ
// State machine IRQ flags register
// 0x000000ff [7:0] IRQ (0x00)
io_rw_32 irq;
_REG_(PIO_IRQ_FORCE_OFFSET) // PIO_IRQ_FORCE
// Writing a 1 to each of these bits will forcibly assert the corresponding IRQ
// 0x000000ff [7:0] IRQ_FORCE (0x00)
io_wo_32 irq_force;
_REG_(PIO_INPUT_SYNC_BYPASS_OFFSET) // PIO_INPUT_SYNC_BYPASS
// There is a 2-flipflop synchronizer on each GPIO input, which protects PIO logic from metastabilities
// 0xffffffff [31:0] INPUT_SYNC_BYPASS (0x00000000)
io_rw_32 input_sync_bypass;
_REG_(PIO_DBG_PADOUT_OFFSET) // PIO_DBG_PADOUT
// Read to sample the pad output values PIO is currently driving to the GPIOs
// 0xffffffff [31:0] DBG_PADOUT (0x00000000)
io_ro_32 dbg_padout;
_REG_(PIO_DBG_PADOE_OFFSET) // PIO_DBG_PADOE
// Read to sample the pad output enables (direction) PIO is currently driving to the GPIOs
// 0xffffffff [31:0] DBG_PADOE (0x00000000)
io_ro_32 dbg_padoe;
_REG_(PIO_DBG_CFGINFO_OFFSET) // PIO_DBG_CFGINFO
// The PIO hardware has some free parameters that may vary between chip products
// 0xf0000000 [31:28] VERSION (0x1) Version of the core PIO hardware
// 0x003f0000 [21:16] IMEM_SIZE (-) The size of the instruction memory, measured in units of...
// 0x00000f00 [11:8] SM_COUNT (-) The number of state machines this PIO instance is equipped with
// 0x0000003f [5:0] FIFO_DEPTH (-) The depth of the state machine TX/RX FIFOs, measured in words
io_ro_32 dbg_cfginfo;
// (Description copied from array index 0 register PIO_INSTR_MEM0 applies similarly to other array indexes)
_REG_(PIO_INSTR_MEM0_OFFSET) // PIO_INSTR_MEM0
// Write-only access to instruction memory location 0
// 0x0000ffff [15:0] INSTR_MEM0 (0x0000)
io_wo_32 instr_mem[32];
pio_sm_hw_t sm[4];
// (Description copied from array index 0 register PIO_RXF0_PUTGET0 applies similarly to other array indexes)
_REG_(PIO_RXF0_PUTGET0_OFFSET) // PIO_RXF0_PUTGET0
// Direct read/write access to the RX FIFO on all SMs, if SHIFTCTRL_FJOIN_RX_PUT xor SHIFTCTRL_FJOIN_RX_GET is set
// 0xffffffff [31:0] RXF0_PUTGET0 (0x00000000)
io_rw_32 rxf_putget[4][4];
_REG_(PIO_GPIOBASE_OFFSET) // PIO_GPIOBASE
// Relocate GPIO 0 (from PIO's point of view) in the system GPIO numbering, to access more than 32...
// 0x00000010 [4] GPIOBASE (0)
io_rw_32 gpiobase;
_REG_(PIO_INTR_OFFSET) // PIO_INTR
// Raw Interrupts
// 0x00008000 [15] SM7 (0)
// 0x00004000 [14] SM6 (0)
// 0x00002000 [13] SM5 (0)
// 0x00001000 [12] SM4 (0)
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_ro_32 intr;
union {
struct {
_REG_(PIO_IRQ0_INTE_OFFSET) // PIO_IRQ0_INTE
// Interrupt Enable for irq0
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 inte0;
_REG_(PIO_IRQ0_INTF_OFFSET) // PIO_IRQ0_INTF
// Interrupt Force for irq0
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 intf0;
_REG_(PIO_IRQ0_INTS_OFFSET) // PIO_IRQ0_INTS
// Interrupt status after masking & forcing for irq0
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_ro_32 ints0;
_REG_(PIO_IRQ1_INTE_OFFSET) // PIO_IRQ1_INTE
// Interrupt Enable for irq1
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 inte1;
_REG_(PIO_IRQ1_INTF_OFFSET) // PIO_IRQ1_INTF
// Interrupt Force for irq1
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_rw_32 intf1;
_REG_(PIO_IRQ1_INTS_OFFSET) // PIO_IRQ1_INTS
// Interrupt status after masking & forcing for irq1
// 0x00000800 [11] SM3 (0)
// 0x00000400 [10] SM2 (0)
// 0x00000200 [9] SM1 (0)
// 0x00000100 [8] SM0 (0)
// 0x00000080 [7] SM3_TXNFULL (0)
// 0x00000040 [6] SM2_TXNFULL (0)
// 0x00000020 [5] SM1_TXNFULL (0)
// 0x00000010 [4] SM0_TXNFULL (0)
// 0x00000008 [3] SM3_RXNEMPTY (0)
// 0x00000004 [2] SM2_RXNEMPTY (0)
// 0x00000002 [1] SM1_RXNEMPTY (0)
// 0x00000001 [0] SM0_RXNEMPTY (0)
io_ro_32 ints1;
};
pio_irq_ctrl_hw_t irq_ctrl[2];
};
} pio_hw_t;
#define pio0_hw ((pio_hw_t *)PIO0_BASE)
#define pio1_hw ((pio_hw_t *)PIO1_BASE)
#define pio2_hw ((pio_hw_t *)PIO2_BASE)
static_assert(sizeof (pio_hw_t) == 0x0188, "");
#endif // _HARDWARE_STRUCTS_PIO_H

View File

@@ -0,0 +1,82 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_PLL_H
#define _HARDWARE_STRUCTS_PLL_H
/**
* \file rp2350/pll.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/pll.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_pll
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pll.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
/// \tag::pll_hw[]
typedef struct {
_REG_(PLL_CS_OFFSET) // PLL_CS
// Control and Status
// 0x80000000 [31] LOCK (0) PLL is locked
// 0x40000000 [30] LOCK_N (0) PLL is not locked +
// 0x00000100 [8] BYPASS (0) Passes the reference clock to the output instead of the...
// 0x0000003f [5:0] REFDIV (0x01) Divides the PLL input reference clock
io_rw_32 cs;
_REG_(PLL_PWR_OFFSET) // PLL_PWR
// Controls the PLL power modes
// 0x00000020 [5] VCOPD (1) PLL VCO powerdown +
// 0x00000008 [3] POSTDIVPD (1) PLL post divider powerdown +
// 0x00000004 [2] DSMPD (1) PLL DSM powerdown +
// 0x00000001 [0] PD (1) PLL powerdown +
io_rw_32 pwr;
_REG_(PLL_FBDIV_INT_OFFSET) // PLL_FBDIV_INT
// Feedback divisor
// 0x00000fff [11:0] FBDIV_INT (0x000) see ctrl reg description for constraints
io_rw_32 fbdiv_int;
_REG_(PLL_PRIM_OFFSET) // PLL_PRIM
// Controls the PLL post dividers for the primary output
// 0x00070000 [18:16] POSTDIV1 (0x7) divide by 1-7
// 0x00007000 [14:12] POSTDIV2 (0x7) divide by 1-7
io_rw_32 prim;
_REG_(PLL_INTR_OFFSET) // PLL_INTR
// Raw Interrupts
// 0x00000001 [0] LOCK_N_STICKY (0)
io_rw_32 intr;
_REG_(PLL_INTE_OFFSET) // PLL_INTE
// Interrupt Enable
// 0x00000001 [0] LOCK_N_STICKY (0)
io_rw_32 inte;
_REG_(PLL_INTF_OFFSET) // PLL_INTF
// Interrupt Force
// 0x00000001 [0] LOCK_N_STICKY (0)
io_rw_32 intf;
_REG_(PLL_INTS_OFFSET) // PLL_INTS
// Interrupt status after masking & forcing
// 0x00000001 [0] LOCK_N_STICKY (0)
io_ro_32 ints;
} pll_hw_t;
/// \end::pll_hw[]
#define pll_sys_hw ((pll_hw_t *)PLL_SYS_BASE)
#define pll_usb_hw ((pll_hw_t *)PLL_USB_BASE)
static_assert(sizeof (pll_hw_t) == 0x0020, "");
#endif // _HARDWARE_STRUCTS_PLL_H

View File

@@ -0,0 +1,338 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_POWMAN_H
#define _HARDWARE_STRUCTS_POWMAN_H
/**
* \file rp2350/powman.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/powman.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_powman
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/powman.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(POWMAN_BADPASSWD_OFFSET) // POWMAN_BADPASSWD
// Indicates a bad password has been used
// 0x00000001 [0] BADPASSWD (0)
io_rw_32 badpasswd;
_REG_(POWMAN_VREG_CTRL_OFFSET) // POWMAN_VREG_CTRL
// Voltage Regulator Control
// 0x00008000 [15] RST_N (1) returns the regulator to its startup settings +
// 0x00002000 [13] UNLOCK (0) unlocks the VREG control interface after power up +
// 0x00001000 [12] ISOLATE (0) isolates the VREG control interface +
// 0x00000100 [8] DISABLE_VOLTAGE_LIMIT (0) 0=not disabled, 1=enabled
// 0x00000070 [6:4] HT_TH (0x5) high temperature protection threshold +
io_rw_32 vreg_ctrl;
_REG_(POWMAN_VREG_STS_OFFSET) // POWMAN_VREG_STS
// Voltage Regulator Status
// 0x00000010 [4] VOUT_OK (0) output regulation status +
// 0x00000001 [0] STARTUP (0) startup status +
io_ro_32 vreg_sts;
_REG_(POWMAN_VREG_OFFSET) // POWMAN_VREG
// Voltage Regulator Settings
// 0x00008000 [15] UPDATE_IN_PROGRESS (0) regulator state is being updated +
// 0x000001f0 [8:4] VSEL (0x0b) output voltage select +
// 0x00000002 [1] HIZ (0) high impedance mode select +
io_rw_32 vreg;
_REG_(POWMAN_VREG_LP_ENTRY_OFFSET) // POWMAN_VREG_LP_ENTRY
// Voltage Regulator Low Power Entry Settings
// 0x000001f0 [8:4] VSEL (0x0b) output voltage select +
// 0x00000004 [2] MODE (1) selects either normal (switching) mode or low power...
// 0x00000002 [1] HIZ (0) high impedance mode select +
io_rw_32 vreg_lp_entry;
_REG_(POWMAN_VREG_LP_EXIT_OFFSET) // POWMAN_VREG_LP_EXIT
// Voltage Regulator Low Power Exit Settings
// 0x000001f0 [8:4] VSEL (0x0b) output voltage select +
// 0x00000004 [2] MODE (0) selects either normal (switching) mode or low power...
// 0x00000002 [1] HIZ (0) high impedance mode select +
io_rw_32 vreg_lp_exit;
_REG_(POWMAN_BOD_CTRL_OFFSET) // POWMAN_BOD_CTRL
// Brown-out Detection Control
// 0x00001000 [12] ISOLATE (0) isolates the brown-out detection control interface +
io_rw_32 bod_ctrl;
_REG_(POWMAN_BOD_OFFSET) // POWMAN_BOD
// Brown-out Detection Settings
// 0x000001f0 [8:4] VSEL (0x0b) threshold select +
// 0x00000001 [0] EN (1) enable brown-out detection +
io_rw_32 bod;
_REG_(POWMAN_BOD_LP_ENTRY_OFFSET) // POWMAN_BOD_LP_ENTRY
// Brown-out Detection Low Power Entry Settings
// 0x000001f0 [8:4] VSEL (0x0b) threshold select +
// 0x00000001 [0] EN (0) enable brown-out detection +
io_rw_32 bod_lp_entry;
_REG_(POWMAN_BOD_LP_EXIT_OFFSET) // POWMAN_BOD_LP_EXIT
// Brown-out Detection Low Power Exit Settings
// 0x000001f0 [8:4] VSEL (0x0b) threshold select +
// 0x00000001 [0] EN (1) enable brown-out detection +
io_rw_32 bod_lp_exit;
_REG_(POWMAN_LPOSC_OFFSET) // POWMAN_LPOSC
// Low power oscillator control register
// 0x000003f0 [9:4] TRIM (0x20) Frequency trim - the trim step is typically 1% of the...
// 0x00000003 [1:0] MODE (0x3) This feature has been removed
io_rw_32 lposc;
_REG_(POWMAN_CHIP_RESET_OFFSET) // POWMAN_CHIP_RESET
// Chip reset control and status
// 0x10000000 [28] HAD_WATCHDOG_RESET_RSM (0) Last reset was a watchdog timeout which was configured...
// 0x08000000 [27] HAD_HZD_SYS_RESET_REQ (0) Last reset was a system reset from the hazard debugger +
// 0x04000000 [26] HAD_GLITCH_DETECT (0) Last reset was due to a power supply glitch +
// 0x02000000 [25] HAD_SWCORE_PD (0) Last reset was a switched core powerdown +
// 0x01000000 [24] HAD_WATCHDOG_RESET_SWCORE (0) Last reset was a watchdog timeout which was configured...
// 0x00800000 [23] HAD_WATCHDOG_RESET_POWMAN (0) Last reset was a watchdog timeout which was configured...
// 0x00400000 [22] HAD_WATCHDOG_RESET_POWMAN_ASYNC (0) Last reset was a watchdog timeout which was configured...
// 0x00200000 [21] HAD_RESCUE (0) Last reset was a rescue reset from the debugger +
// 0x00080000 [19] HAD_DP_RESET_REQ (0) Last reset was an reset request from the arm debugger +
// 0x00040000 [18] HAD_RUN_LOW (0) Last reset was from the RUN pin +
// 0x00020000 [17] HAD_BOR (0) Last reset was from the brown-out detection block +
// 0x00010000 [16] HAD_POR (0) Last reset was from the power-on reset +
// 0x00000010 [4] RESCUE_FLAG (0) This is set by a rescue reset from the RP-AP
// 0x00000001 [0] DOUBLE_TAP (0) This flag is set by double-tapping RUN
io_rw_32 chip_reset;
_REG_(POWMAN_WDSEL_OFFSET) // POWMAN_WDSEL
// Allows a watchdog reset to reset the internal state of powman in addition to the power-on state...
// 0x00001000 [12] RESET_RSM (0) If set to 1, a watchdog reset will run the full power-on...
// 0x00000100 [8] RESET_SWCORE (0) If set to 1, a watchdog reset will reset the switched...
// 0x00000010 [4] RESET_POWMAN (0) If set to 1, a watchdog reset will restore powman...
// 0x00000001 [0] RESET_POWMAN_ASYNC (0) If set to 1, a watchdog reset will restore powman...
io_rw_32 wdsel;
_REG_(POWMAN_SEQ_CFG_OFFSET) // POWMAN_SEQ_CFG
// For configuration of the power sequencer +
// 0x00100000 [20] USING_FAST_POWCK (1) 0 indicates the POWMAN clock is running from the low...
// 0x00020000 [17] USING_BOD_LP (0) Indicates the brown-out detector (BOD) mode +
// 0x00010000 [16] USING_VREG_LP (0) Indicates the voltage regulator (VREG) mode +
// 0x00001000 [12] USE_FAST_POWCK (1) selects the reference clock (clk_ref) as the source of...
// 0x00000100 [8] RUN_LPOSC_IN_LP (1) Set to 0 to stop the low power osc when the...
// 0x00000080 [7] USE_BOD_HP (1) Set to 0 to prevent automatic switching to bod high...
// 0x00000040 [6] USE_BOD_LP (1) Set to 0 to prevent automatic switching to bod low power...
// 0x00000020 [5] USE_VREG_HP (1) Set to 0 to prevent automatic switching to vreg high...
// 0x00000010 [4] USE_VREG_LP (1) Set to 0 to prevent automatic switching to vreg low...
// 0x00000002 [1] HW_PWRUP_SRAM0 (0) Specifies the power state of SRAM0 when powering up...
// 0x00000001 [0] HW_PWRUP_SRAM1 (0) Specifies the power state of SRAM1 when powering up...
io_rw_32 seq_cfg;
_REG_(POWMAN_STATE_OFFSET) // POWMAN_STATE
// This register controls the power state of the 4 power domains
// 0x00002000 [13] CHANGING (0)
// 0x00001000 [12] WAITING (0)
// 0x00000800 [11] BAD_HW_REQ (0) Bad hardware initiated state request
// 0x00000400 [10] BAD_SW_REQ (0) Bad software initiated state request
// 0x00000200 [9] PWRUP_WHILE_WAITING (0) Request ignored because of a pending pwrup request
// 0x00000100 [8] REQ_IGNORED (0)
// 0x000000f0 [7:4] REQ (0x0)
// 0x0000000f [3:0] CURRENT (0xf)
io_rw_32 state;
_REG_(POWMAN_POW_FASTDIV_OFFSET) // POWMAN_POW_FASTDIV
// 0x000007ff [10:0] POW_FASTDIV (0x040) divides the POWMAN clock to provide a tick for the delay...
io_rw_32 pow_fastdiv;
_REG_(POWMAN_POW_DELAY_OFFSET) // POWMAN_POW_DELAY
// power state machine delays
// 0x0000ff00 [15:8] SRAM_STEP (0x20) timing between the sram0 and sram1 power state machine steps +
// 0x000000f0 [7:4] XIP_STEP (0x1) timing between the xip power state machine steps +
// 0x0000000f [3:0] SWCORE_STEP (0x1) timing between the swcore power state machine steps +
io_rw_32 pow_delay;
// (Description copied from array index 0 register POWMAN_EXT_CTRL0 applies similarly to other array indexes)
_REG_(POWMAN_EXT_CTRL0_OFFSET) // POWMAN_EXT_CTRL0
// Configures a gpio as a power mode aware control output
// 0x00004000 [14] LP_EXIT_STATE (0) output level when exiting the low power state
// 0x00002000 [13] LP_ENTRY_STATE (0) output level when entering the low power state
// 0x00001000 [12] INIT_STATE (0)
// 0x00000100 [8] INIT (0)
// 0x0000003f [5:0] GPIO_SELECT (0x3f) selects from gpio 0->30 +
io_rw_32 ext_ctrl[2];
_REG_(POWMAN_EXT_TIME_REF_OFFSET) // POWMAN_EXT_TIME_REF
// Select a GPIO to use as a time reference, the source can be used to drive the low power clock at...
// 0x00000010 [4] DRIVE_LPCK (0) Use the selected GPIO to drive the 32kHz low power...
// 0x00000003 [1:0] SOURCE_SEL (0x0) 0 -> gpio12 +
io_rw_32 ext_time_ref;
_REG_(POWMAN_LPOSC_FREQ_KHZ_INT_OFFSET) // POWMAN_LPOSC_FREQ_KHZ_INT
// Informs the AON Timer of the integer component of the clock frequency when running off the LPOSC
// 0x0000003f [5:0] LPOSC_FREQ_KHZ_INT (0x20) Integer component of the LPOSC or GPIO clock source...
io_rw_32 lposc_freq_khz_int;
_REG_(POWMAN_LPOSC_FREQ_KHZ_FRAC_OFFSET) // POWMAN_LPOSC_FREQ_KHZ_FRAC
// Informs the AON Timer of the fractional component of the clock frequency when running off the LPOSC
// 0x0000ffff [15:0] LPOSC_FREQ_KHZ_FRAC (0xc49c) Fractional component of the LPOSC or GPIO clock source...
io_rw_32 lposc_freq_khz_frac;
_REG_(POWMAN_XOSC_FREQ_KHZ_INT_OFFSET) // POWMAN_XOSC_FREQ_KHZ_INT
// Informs the AON Timer of the integer component of the clock frequency when running off the XOSC
// 0x0000ffff [15:0] XOSC_FREQ_KHZ_INT (0x2ee0) Integer component of the XOSC frequency in kHz
io_rw_32 xosc_freq_khz_int;
_REG_(POWMAN_XOSC_FREQ_KHZ_FRAC_OFFSET) // POWMAN_XOSC_FREQ_KHZ_FRAC
// Informs the AON Timer of the fractional component of the clock frequency when running off the XOSC
// 0x0000ffff [15:0] XOSC_FREQ_KHZ_FRAC (0x0000) Fractional component of the XOSC frequency in kHz
io_rw_32 xosc_freq_khz_frac;
_REG_(POWMAN_SET_TIME_63TO48_OFFSET) // POWMAN_SET_TIME_63TO48
// 0x0000ffff [15:0] SET_TIME_63TO48 (0x0000) For setting the time, do not use for reading the time,...
io_rw_32 set_time_63to48;
_REG_(POWMAN_SET_TIME_47TO32_OFFSET) // POWMAN_SET_TIME_47TO32
// 0x0000ffff [15:0] SET_TIME_47TO32 (0x0000) For setting the time, do not use for reading the time,...
io_rw_32 set_time_47to32;
_REG_(POWMAN_SET_TIME_31TO16_OFFSET) // POWMAN_SET_TIME_31TO16
// 0x0000ffff [15:0] SET_TIME_31TO16 (0x0000) For setting the time, do not use for reading the time,...
io_rw_32 set_time_31to16;
_REG_(POWMAN_SET_TIME_15TO0_OFFSET) // POWMAN_SET_TIME_15TO0
// 0x0000ffff [15:0] SET_TIME_15TO0 (0x0000) For setting the time, do not use for reading the time,...
io_rw_32 set_time_15to0;
_REG_(POWMAN_READ_TIME_UPPER_OFFSET) // POWMAN_READ_TIME_UPPER
// 0xffffffff [31:0] READ_TIME_UPPER (0x00000000) For reading bits 63:32 of the timer
io_ro_32 read_time_upper;
_REG_(POWMAN_READ_TIME_LOWER_OFFSET) // POWMAN_READ_TIME_LOWER
// 0xffffffff [31:0] READ_TIME_LOWER (0x00000000) For reading bits 31:0 of the timer
io_ro_32 read_time_lower;
_REG_(POWMAN_ALARM_TIME_63TO48_OFFSET) // POWMAN_ALARM_TIME_63TO48
// 0x0000ffff [15:0] ALARM_TIME_63TO48 (0x0000) This field must only be written when POWMAN_ALARM_ENAB=0
io_rw_32 alarm_time_63to48;
_REG_(POWMAN_ALARM_TIME_47TO32_OFFSET) // POWMAN_ALARM_TIME_47TO32
// 0x0000ffff [15:0] ALARM_TIME_47TO32 (0x0000) This field must only be written when POWMAN_ALARM_ENAB=0
io_rw_32 alarm_time_47to32;
_REG_(POWMAN_ALARM_TIME_31TO16_OFFSET) // POWMAN_ALARM_TIME_31TO16
// 0x0000ffff [15:0] ALARM_TIME_31TO16 (0x0000) This field must only be written when POWMAN_ALARM_ENAB=0
io_rw_32 alarm_time_31to16;
_REG_(POWMAN_ALARM_TIME_15TO0_OFFSET) // POWMAN_ALARM_TIME_15TO0
// 0x0000ffff [15:0] ALARM_TIME_15TO0 (0x0000) This field must only be written when POWMAN_ALARM_ENAB=0
io_rw_32 alarm_time_15to0;
_REG_(POWMAN_TIMER_OFFSET) // POWMAN_TIMER
// 0x00080000 [19] USING_GPIO_1HZ (0) Timer is synchronised to a 1hz gpio source
// 0x00040000 [18] USING_GPIO_1KHZ (0) Timer is running from a 1khz gpio source
// 0x00020000 [17] USING_LPOSC (0) Timer is running from lposc
// 0x00010000 [16] USING_XOSC (0) Timer is running from xosc
// 0x00002000 [13] USE_GPIO_1HZ (0) Selects the gpio source as the reference for the sec counter
// 0x00000400 [10] USE_GPIO_1KHZ (0) switch to gpio as the source of the 1kHz timer tick
// 0x00000200 [9] USE_XOSC (0) switch to xosc as the source of the 1kHz timer tick
// 0x00000100 [8] USE_LPOSC (0) Switch to lposc as the source of the 1kHz timer tick
// 0x00000040 [6] ALARM (0) Alarm has fired
// 0x00000020 [5] PWRUP_ON_ALARM (0) Alarm wakes the chip from low power mode
// 0x00000010 [4] ALARM_ENAB (0) Enables the alarm
// 0x00000004 [2] CLEAR (0) Clears the timer, does not disable the timer and does...
// 0x00000002 [1] RUN (0) Timer enable
// 0x00000001 [0] NONSEC_WRITE (0) Control whether Non-secure software can write to the...
io_rw_32 timer;
// (Description copied from array index 0 register POWMAN_PWRUP0 applies similarly to other array indexes)
_REG_(POWMAN_PWRUP0_OFFSET) // POWMAN_PWRUP0
// 4 GPIO powerup events can be configured to wake the chip up from a low power state
// 0x00000400 [10] RAW_STATUS (0) Value of selected gpio pin (only if enable == 1)
// 0x00000200 [9] STATUS (0) Status of gpio wakeup
// 0x00000100 [8] MODE (0) Edge or level detect
// 0x00000080 [7] DIRECTION (0)
// 0x00000040 [6] ENABLE (0) Set to 1 to enable the wakeup source
// 0x0000003f [5:0] SOURCE (0x3f)
io_rw_32 pwrup[4];
_REG_(POWMAN_CURRENT_PWRUP_REQ_OFFSET) // POWMAN_CURRENT_PWRUP_REQ
// Indicates current powerup request state +
// 0x0000007f [6:0] CURRENT_PWRUP_REQ (0x00)
io_ro_32 current_pwrup_req;
_REG_(POWMAN_LAST_SWCORE_PWRUP_OFFSET) // POWMAN_LAST_SWCORE_PWRUP
// Indicates which pwrup source triggered the last switched-core power up +
// 0x0000007f [6:0] LAST_SWCORE_PWRUP (0x00)
io_ro_32 last_swcore_pwrup;
_REG_(POWMAN_DBG_PWRCFG_OFFSET) // POWMAN_DBG_PWRCFG
// 0x00000001 [0] IGNORE (0) Ignore pwrup req from debugger
io_rw_32 dbg_pwrcfg;
_REG_(POWMAN_BOOTDIS_OFFSET) // POWMAN_BOOTDIS
// Tell the bootrom to ignore the BOOT0
// 0x00000002 [1] NEXT (0) This flag always ORs writes into its current contents
// 0x00000001 [0] NOW (0) When powman resets the RSM, the current value of...
io_rw_32 bootdis;
_REG_(POWMAN_DBGCONFIG_OFFSET) // POWMAN_DBGCONFIG
// 0x0000000f [3:0] DP_INSTID (0x0) Configure DP instance ID for SWD multidrop selection
io_rw_32 dbgconfig;
// (Description copied from array index 0 register POWMAN_SCRATCH0 applies similarly to other array indexes)
_REG_(POWMAN_SCRATCH0_OFFSET) // POWMAN_SCRATCH0
// Scratch register
// 0xffffffff [31:0] SCRATCH0 (0x00000000)
io_rw_32 scratch[8];
// (Description copied from array index 0 register POWMAN_BOOT0 applies similarly to other array indexes)
_REG_(POWMAN_BOOT0_OFFSET) // POWMAN_BOOT0
// Scratch register
// 0xffffffff [31:0] BOOT0 (0x00000000)
io_rw_32 boot[4];
_REG_(POWMAN_INTR_OFFSET) // POWMAN_INTR
// Raw Interrupts
// 0x00000008 [3] PWRUP_WHILE_WAITING (0) Source is state
// 0x00000004 [2] STATE_REQ_IGNORED (0) Source is state
// 0x00000002 [1] TIMER (0)
// 0x00000001 [0] VREG_OUTPUT_LOW (0)
io_rw_32 intr;
_REG_(POWMAN_INTE_OFFSET) // POWMAN_INTE
// Interrupt Enable
// 0x00000008 [3] PWRUP_WHILE_WAITING (0) Source is state
// 0x00000004 [2] STATE_REQ_IGNORED (0) Source is state
// 0x00000002 [1] TIMER (0)
// 0x00000001 [0] VREG_OUTPUT_LOW (0)
io_rw_32 inte;
_REG_(POWMAN_INTF_OFFSET) // POWMAN_INTF
// Interrupt Force
// 0x00000008 [3] PWRUP_WHILE_WAITING (0) Source is state
// 0x00000004 [2] STATE_REQ_IGNORED (0) Source is state
// 0x00000002 [1] TIMER (0)
// 0x00000001 [0] VREG_OUTPUT_LOW (0)
io_rw_32 intf;
_REG_(POWMAN_INTS_OFFSET) // POWMAN_INTS
// Interrupt status after masking & forcing
// 0x00000008 [3] PWRUP_WHILE_WAITING (0) Source is state
// 0x00000004 [2] STATE_REQ_IGNORED (0) Source is state
// 0x00000002 [1] TIMER (0)
// 0x00000001 [0] VREG_OUTPUT_LOW (0)
io_ro_32 ints;
} powman_hw_t;
#define powman_hw ((powman_hw_t *)POWMAN_BASE)
static_assert(sizeof (powman_hw_t) == 0x00f0, "");
#endif // _HARDWARE_STRUCTS_POWMAN_H

View File

@@ -0,0 +1,148 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_PSM_H
#define _HARDWARE_STRUCTS_PSM_H
/**
* \file rp2350/psm.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/psm.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_psm
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/psm.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(PSM_FRCE_ON_OFFSET) // PSM_FRCE_ON
// Force block out of reset (i
// 0x01000000 [24] PROC1 (0)
// 0x00800000 [23] PROC0 (0)
// 0x00400000 [22] ACCESSCTRL (0)
// 0x00200000 [21] SIO (0)
// 0x00100000 [20] XIP (0)
// 0x00080000 [19] SRAM9 (0)
// 0x00040000 [18] SRAM8 (0)
// 0x00020000 [17] SRAM7 (0)
// 0x00010000 [16] SRAM6 (0)
// 0x00008000 [15] SRAM5 (0)
// 0x00004000 [14] SRAM4 (0)
// 0x00002000 [13] SRAM3 (0)
// 0x00001000 [12] SRAM2 (0)
// 0x00000800 [11] SRAM1 (0)
// 0x00000400 [10] SRAM0 (0)
// 0x00000200 [9] BOOTRAM (0)
// 0x00000100 [8] ROM (0)
// 0x00000080 [7] BUSFABRIC (0)
// 0x00000040 [6] PSM_READY (0)
// 0x00000020 [5] CLOCKS (0)
// 0x00000010 [4] RESETS (0)
// 0x00000008 [3] XOSC (0)
// 0x00000004 [2] ROSC (0)
// 0x00000002 [1] OTP (0)
// 0x00000001 [0] PROC_COLD (0)
io_rw_32 frce_on;
_REG_(PSM_FRCE_OFF_OFFSET) // PSM_FRCE_OFF
// Force into reset (i
// 0x01000000 [24] PROC1 (0)
// 0x00800000 [23] PROC0 (0)
// 0x00400000 [22] ACCESSCTRL (0)
// 0x00200000 [21] SIO (0)
// 0x00100000 [20] XIP (0)
// 0x00080000 [19] SRAM9 (0)
// 0x00040000 [18] SRAM8 (0)
// 0x00020000 [17] SRAM7 (0)
// 0x00010000 [16] SRAM6 (0)
// 0x00008000 [15] SRAM5 (0)
// 0x00004000 [14] SRAM4 (0)
// 0x00002000 [13] SRAM3 (0)
// 0x00001000 [12] SRAM2 (0)
// 0x00000800 [11] SRAM1 (0)
// 0x00000400 [10] SRAM0 (0)
// 0x00000200 [9] BOOTRAM (0)
// 0x00000100 [8] ROM (0)
// 0x00000080 [7] BUSFABRIC (0)
// 0x00000040 [6] PSM_READY (0)
// 0x00000020 [5] CLOCKS (0)
// 0x00000010 [4] RESETS (0)
// 0x00000008 [3] XOSC (0)
// 0x00000004 [2] ROSC (0)
// 0x00000002 [1] OTP (0)
// 0x00000001 [0] PROC_COLD (0)
io_rw_32 frce_off;
_REG_(PSM_WDSEL_OFFSET) // PSM_WDSEL
// Set to 1 if the watchdog should reset this
// 0x01000000 [24] PROC1 (0)
// 0x00800000 [23] PROC0 (0)
// 0x00400000 [22] ACCESSCTRL (0)
// 0x00200000 [21] SIO (0)
// 0x00100000 [20] XIP (0)
// 0x00080000 [19] SRAM9 (0)
// 0x00040000 [18] SRAM8 (0)
// 0x00020000 [17] SRAM7 (0)
// 0x00010000 [16] SRAM6 (0)
// 0x00008000 [15] SRAM5 (0)
// 0x00004000 [14] SRAM4 (0)
// 0x00002000 [13] SRAM3 (0)
// 0x00001000 [12] SRAM2 (0)
// 0x00000800 [11] SRAM1 (0)
// 0x00000400 [10] SRAM0 (0)
// 0x00000200 [9] BOOTRAM (0)
// 0x00000100 [8] ROM (0)
// 0x00000080 [7] BUSFABRIC (0)
// 0x00000040 [6] PSM_READY (0)
// 0x00000020 [5] CLOCKS (0)
// 0x00000010 [4] RESETS (0)
// 0x00000008 [3] XOSC (0)
// 0x00000004 [2] ROSC (0)
// 0x00000002 [1] OTP (0)
// 0x00000001 [0] PROC_COLD (0)
io_rw_32 wdsel;
_REG_(PSM_DONE_OFFSET) // PSM_DONE
// Is the subsystem ready?
// 0x01000000 [24] PROC1 (0)
// 0x00800000 [23] PROC0 (0)
// 0x00400000 [22] ACCESSCTRL (0)
// 0x00200000 [21] SIO (0)
// 0x00100000 [20] XIP (0)
// 0x00080000 [19] SRAM9 (0)
// 0x00040000 [18] SRAM8 (0)
// 0x00020000 [17] SRAM7 (0)
// 0x00010000 [16] SRAM6 (0)
// 0x00008000 [15] SRAM5 (0)
// 0x00004000 [14] SRAM4 (0)
// 0x00002000 [13] SRAM3 (0)
// 0x00001000 [12] SRAM2 (0)
// 0x00000800 [11] SRAM1 (0)
// 0x00000400 [10] SRAM0 (0)
// 0x00000200 [9] BOOTRAM (0)
// 0x00000100 [8] ROM (0)
// 0x00000080 [7] BUSFABRIC (0)
// 0x00000040 [6] PSM_READY (0)
// 0x00000020 [5] CLOCKS (0)
// 0x00000010 [4] RESETS (0)
// 0x00000008 [3] XOSC (0)
// 0x00000004 [2] ROSC (0)
// 0x00000002 [1] OTP (0)
// 0x00000001 [0] PROC_COLD (0)
io_ro_32 done;
} psm_hw_t;
#define psm_hw ((psm_hw_t *)PSM_BASE)
static_assert(sizeof (psm_hw_t) == 0x0010, "");
#endif // _HARDWARE_STRUCTS_PSM_H

View File

@@ -0,0 +1,252 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_PWM_H
#define _HARDWARE_STRUCTS_PWM_H
/**
* \file rp2350/pwm.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/pwm.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_pwm
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/pwm.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(PWM_CH0_CSR_OFFSET) // PWM_CH0_CSR
// Control and status register
// 0x00000080 [7] PH_ADV (0) Advance the phase of the counter by 1 count, while it is running
// 0x00000040 [6] PH_RET (0) Retard the phase of the counter by 1 count, while it is running
// 0x00000030 [5:4] DIVMODE (0x0)
// 0x00000008 [3] B_INV (0) Invert output B
// 0x00000004 [2] A_INV (0) Invert output A
// 0x00000002 [1] PH_CORRECT (0) 1: Enable phase-correct modulation
// 0x00000001 [0] EN (0) Enable the PWM channel
io_rw_32 csr;
_REG_(PWM_CH0_DIV_OFFSET) // PWM_CH0_DIV
// INT and FRAC form a fixed-point fractional number
// 0x00000ff0 [11:4] INT (0x01)
// 0x0000000f [3:0] FRAC (0x0)
io_rw_32 div;
_REG_(PWM_CH0_CTR_OFFSET) // PWM_CH0_CTR
// Direct access to the PWM counter
// 0x0000ffff [15:0] CH0_CTR (0x0000)
io_rw_32 ctr;
_REG_(PWM_CH0_CC_OFFSET) // PWM_CH0_CC
// Counter compare values
// 0xffff0000 [31:16] B (0x0000)
// 0x0000ffff [15:0] A (0x0000)
io_rw_32 cc;
_REG_(PWM_CH0_TOP_OFFSET) // PWM_CH0_TOP
// Counter wrap value
// 0x0000ffff [15:0] CH0_TOP (0xffff)
io_rw_32 top;
} pwm_slice_hw_t;
typedef struct {
_REG_(PWM_IRQ0_INTE_OFFSET) // PWM_IRQ0_INTE
// Interrupt Enable for irq0
// 0x00000800 [11] CH11 (0)
// 0x00000400 [10] CH10 (0)
// 0x00000200 [9] CH9 (0)
// 0x00000100 [8] CH8 (0)
// 0x00000080 [7] CH7 (0)
// 0x00000040 [6] CH6 (0)
// 0x00000020 [5] CH5 (0)
// 0x00000010 [4] CH4 (0)
// 0x00000008 [3] CH3 (0)
// 0x00000004 [2] CH2 (0)
// 0x00000002 [1] CH1 (0)
// 0x00000001 [0] CH0 (0)
io_rw_32 inte;
_REG_(PWM_IRQ0_INTF_OFFSET) // PWM_IRQ0_INTF
// Interrupt Force for irq0
// 0x00000800 [11] CH11 (0)
// 0x00000400 [10] CH10 (0)
// 0x00000200 [9] CH9 (0)
// 0x00000100 [8] CH8 (0)
// 0x00000080 [7] CH7 (0)
// 0x00000040 [6] CH6 (0)
// 0x00000020 [5] CH5 (0)
// 0x00000010 [4] CH4 (0)
// 0x00000008 [3] CH3 (0)
// 0x00000004 [2] CH2 (0)
// 0x00000002 [1] CH1 (0)
// 0x00000001 [0] CH0 (0)
io_rw_32 intf;
_REG_(PWM_IRQ0_INTS_OFFSET) // PWM_IRQ0_INTS
// Interrupt status after masking & forcing for irq0
// 0x00000800 [11] CH11 (0)
// 0x00000400 [10] CH10 (0)
// 0x00000200 [9] CH9 (0)
// 0x00000100 [8] CH8 (0)
// 0x00000080 [7] CH7 (0)
// 0x00000040 [6] CH6 (0)
// 0x00000020 [5] CH5 (0)
// 0x00000010 [4] CH4 (0)
// 0x00000008 [3] CH3 (0)
// 0x00000004 [2] CH2 (0)
// 0x00000002 [1] CH1 (0)
// 0x00000001 [0] CH0 (0)
io_ro_32 ints;
} pwm_irq_ctrl_hw_t;
typedef struct {
pwm_slice_hw_t slice[12];
_REG_(PWM_EN_OFFSET) // PWM_EN
// This register aliases the CSR_EN bits for all channels
// 0x00000800 [11] CH11 (0)
// 0x00000400 [10] CH10 (0)
// 0x00000200 [9] CH9 (0)
// 0x00000100 [8] CH8 (0)
// 0x00000080 [7] CH7 (0)
// 0x00000040 [6] CH6 (0)
// 0x00000020 [5] CH5 (0)
// 0x00000010 [4] CH4 (0)
// 0x00000008 [3] CH3 (0)
// 0x00000004 [2] CH2 (0)
// 0x00000002 [1] CH1 (0)
// 0x00000001 [0] CH0 (0)
io_rw_32 en;
_REG_(PWM_INTR_OFFSET) // PWM_INTR
// Raw Interrupts
// 0x00000800 [11] CH11 (0)
// 0x00000400 [10] CH10 (0)
// 0x00000200 [9] CH9 (0)
// 0x00000100 [8] CH8 (0)
// 0x00000080 [7] CH7 (0)
// 0x00000040 [6] CH6 (0)
// 0x00000020 [5] CH5 (0)
// 0x00000010 [4] CH4 (0)
// 0x00000008 [3] CH3 (0)
// 0x00000004 [2] CH2 (0)
// 0x00000002 [1] CH1 (0)
// 0x00000001 [0] CH0 (0)
io_rw_32 intr;
union {
struct {
_REG_(PWM_IRQ0_INTE_OFFSET) // PWM_IRQ0_INTE
// Interrupt Enable for irq0
// 0x00000800 [11] CH11 (0)
// 0x00000400 [10] CH10 (0)
// 0x00000200 [9] CH9 (0)
// 0x00000100 [8] CH8 (0)
// 0x00000080 [7] CH7 (0)
// 0x00000040 [6] CH6 (0)
// 0x00000020 [5] CH5 (0)
// 0x00000010 [4] CH4 (0)
// 0x00000008 [3] CH3 (0)
// 0x00000004 [2] CH2 (0)
// 0x00000002 [1] CH1 (0)
// 0x00000001 [0] CH0 (0)
io_rw_32 inte;
_REG_(PWM_IRQ0_INTF_OFFSET) // PWM_IRQ0_INTF
// Interrupt Force for irq0
// 0x00000800 [11] CH11 (0)
// 0x00000400 [10] CH10 (0)
// 0x00000200 [9] CH9 (0)
// 0x00000100 [8] CH8 (0)
// 0x00000080 [7] CH7 (0)
// 0x00000040 [6] CH6 (0)
// 0x00000020 [5] CH5 (0)
// 0x00000010 [4] CH4 (0)
// 0x00000008 [3] CH3 (0)
// 0x00000004 [2] CH2 (0)
// 0x00000002 [1] CH1 (0)
// 0x00000001 [0] CH0 (0)
io_rw_32 intf;
_REG_(PWM_IRQ0_INTS_OFFSET) // PWM_IRQ0_INTS
// Interrupt status after masking & forcing for irq0
// 0x00000800 [11] CH11 (0)
// 0x00000400 [10] CH10 (0)
// 0x00000200 [9] CH9 (0)
// 0x00000100 [8] CH8 (0)
// 0x00000080 [7] CH7 (0)
// 0x00000040 [6] CH6 (0)
// 0x00000020 [5] CH5 (0)
// 0x00000010 [4] CH4 (0)
// 0x00000008 [3] CH3 (0)
// 0x00000004 [2] CH2 (0)
// 0x00000002 [1] CH1 (0)
// 0x00000001 [0] CH0 (0)
io_rw_32 ints;
_REG_(PWM_IRQ1_INTE_OFFSET) // PWM_IRQ1_INTE
// Interrupt Enable for irq1
// 0x00000800 [11] CH11 (0)
// 0x00000400 [10] CH10 (0)
// 0x00000200 [9] CH9 (0)
// 0x00000100 [8] CH8 (0)
// 0x00000080 [7] CH7 (0)
// 0x00000040 [6] CH6 (0)
// 0x00000020 [5] CH5 (0)
// 0x00000010 [4] CH4 (0)
// 0x00000008 [3] CH3 (0)
// 0x00000004 [2] CH2 (0)
// 0x00000002 [1] CH1 (0)
// 0x00000001 [0] CH0 (0)
io_rw_32 inte1;
_REG_(PWM_IRQ1_INTF_OFFSET) // PWM_IRQ1_INTF
// Interrupt Force for irq1
// 0x00000800 [11] CH11 (0)
// 0x00000400 [10] CH10 (0)
// 0x00000200 [9] CH9 (0)
// 0x00000100 [8] CH8 (0)
// 0x00000080 [7] CH7 (0)
// 0x00000040 [6] CH6 (0)
// 0x00000020 [5] CH5 (0)
// 0x00000010 [4] CH4 (0)
// 0x00000008 [3] CH3 (0)
// 0x00000004 [2] CH2 (0)
// 0x00000002 [1] CH1 (0)
// 0x00000001 [0] CH0 (0)
io_rw_32 intf1;
_REG_(PWM_IRQ1_INTS_OFFSET) // PWM_IRQ1_INTS
// Interrupt status after masking & forcing for irq1
// 0x00000800 [11] CH11 (0)
// 0x00000400 [10] CH10 (0)
// 0x00000200 [9] CH9 (0)
// 0x00000100 [8] CH8 (0)
// 0x00000080 [7] CH7 (0)
// 0x00000040 [6] CH6 (0)
// 0x00000020 [5] CH5 (0)
// 0x00000010 [4] CH4 (0)
// 0x00000008 [3] CH3 (0)
// 0x00000004 [2] CH2 (0)
// 0x00000002 [1] CH1 (0)
// 0x00000001 [0] CH0 (0)
io_rw_32 ints1;
};
pwm_irq_ctrl_hw_t irq_ctrl[2];
};
} pwm_hw_t;
#define pwm_hw ((pwm_hw_t *)PWM_BASE)
static_assert(sizeof (pwm_hw_t) == 0x0110, "");
#endif // _HARDWARE_STRUCTS_PWM_H

View File

@@ -0,0 +1,125 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_QMI_H
#define _HARDWARE_STRUCTS_QMI_H
/**
* \file rp2350/qmi.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/qmi.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_qmi
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/qmi.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(QMI_M0_TIMING_OFFSET) // QMI_M0_TIMING
// Timing configuration register for memory address window 0
// 0xc0000000 [31:30] COOLDOWN (0x1) Chip select cooldown period
// 0x30000000 [29:28] PAGEBREAK (0x0) When page break is enabled, chip select will...
// 0x02000000 [25] SELECT_SETUP (0) Add up to one additional system clock cycle of setup...
// 0x01800000 [24:23] SELECT_HOLD (0x0) Add up to three additional system clock cycles of active...
// 0x007e0000 [22:17] MAX_SELECT (0x00) Enforce a maximum assertion duration for this window's...
// 0x0001f000 [16:12] MIN_DESELECT (0x00) After this window's chip select is deasserted, it...
// 0x00000700 [10:8] RXDELAY (0x0) Delay the read data sample timing, in units of one half...
// 0x000000ff [7:0] CLKDIV (0x04) Clock divisor
io_rw_32 timing;
_REG_(QMI_M0_RFMT_OFFSET) // QMI_M0_RFMT
// Read transfer format configuration for memory address window 0.
// 0x10000000 [28] DTR (0) Enable double transfer rate (DTR) for read commands:...
// 0x00070000 [18:16] DUMMY_LEN (0x0) Length of dummy phase between command suffix and data...
// 0x0000c000 [15:14] SUFFIX_LEN (0x0) Length of post-address command suffix, in units of 4 bits
// 0x00001000 [12] PREFIX_LEN (1) Length of command prefix, in units of 8 bits
// 0x00000300 [9:8] DATA_WIDTH (0x0) The width used for the data transfer
// 0x000000c0 [7:6] DUMMY_WIDTH (0x0) The width used for the dummy phase, if any
// 0x00000030 [5:4] SUFFIX_WIDTH (0x0) The width used for the post-address command suffix, if any
// 0x0000000c [3:2] ADDR_WIDTH (0x0) The transfer width used for the address
// 0x00000003 [1:0] PREFIX_WIDTH (0x0) The transfer width used for the command prefix, if any
io_rw_32 rfmt;
_REG_(QMI_M0_RCMD_OFFSET) // QMI_M0_RCMD
// Command constants used for reads from memory address window 0.
// 0x0000ff00 [15:8] SUFFIX (0xa0) The command suffix bits following the address, if...
// 0x000000ff [7:0] PREFIX (0x03) The command prefix bits to prepend on each new transfer,...
io_rw_32 rcmd;
_REG_(QMI_M0_WFMT_OFFSET) // QMI_M0_WFMT
// Write transfer format configuration for memory address window 0.
// 0x10000000 [28] DTR (0) Enable double transfer rate (DTR) for write commands:...
// 0x00070000 [18:16] DUMMY_LEN (0x0) Length of dummy phase between command suffix and data...
// 0x0000c000 [15:14] SUFFIX_LEN (0x0) Length of post-address command suffix, in units of 4 bits
// 0x00001000 [12] PREFIX_LEN (1) Length of command prefix, in units of 8 bits
// 0x00000300 [9:8] DATA_WIDTH (0x0) The width used for the data transfer
// 0x000000c0 [7:6] DUMMY_WIDTH (0x0) The width used for the dummy phase, if any
// 0x00000030 [5:4] SUFFIX_WIDTH (0x0) The width used for the post-address command suffix, if any
// 0x0000000c [3:2] ADDR_WIDTH (0x0) The transfer width used for the address
// 0x00000003 [1:0] PREFIX_WIDTH (0x0) The transfer width used for the command prefix, if any
io_rw_32 wfmt;
_REG_(QMI_M0_WCMD_OFFSET) // QMI_M0_WCMD
// Command constants used for writes to memory address window 0.
// 0x0000ff00 [15:8] SUFFIX (0xa0) The command suffix bits following the address, if...
// 0x000000ff [7:0] PREFIX (0x02) The command prefix bits to prepend on each new transfer,...
io_rw_32 wcmd;
} qmi_mem_hw_t;
typedef struct {
_REG_(QMI_DIRECT_CSR_OFFSET) // QMI_DIRECT_CSR
// Control and status for direct serial mode
// 0xc0000000 [31:30] RXDELAY (0x0) Delay the read data sample timing, in units of one half...
// 0x3fc00000 [29:22] CLKDIV (0x06) Clock divisor for direct serial mode
// 0x001c0000 [20:18] RXLEVEL (0x0) Current level of DIRECT_RX FIFO
// 0x00020000 [17] RXFULL (0) When 1, the DIRECT_RX FIFO is currently full
// 0x00010000 [16] RXEMPTY (0) When 1, the DIRECT_RX FIFO is currently empty
// 0x00007000 [14:12] TXLEVEL (0x0) Current level of DIRECT_TX FIFO
// 0x00000800 [11] TXEMPTY (0) When 1, the DIRECT_TX FIFO is currently empty
// 0x00000400 [10] TXFULL (0) When 1, the DIRECT_TX FIFO is currently full
// 0x00000080 [7] AUTO_CS1N (0) When 1, automatically assert the CS1n chip select line...
// 0x00000040 [6] AUTO_CS0N (0) When 1, automatically assert the CS0n chip select line...
// 0x00000008 [3] ASSERT_CS1N (0) When 1, assert (i
// 0x00000004 [2] ASSERT_CS0N (0) When 1, assert (i
// 0x00000002 [1] BUSY (0) Direct mode busy flag
// 0x00000001 [0] EN (0) Enable direct mode
io_rw_32 direct_csr;
_REG_(QMI_DIRECT_TX_OFFSET) // QMI_DIRECT_TX
// Transmit FIFO for direct mode
// 0x00100000 [20] NOPUSH (0) Inhibit the RX FIFO push that would correspond to this...
// 0x00080000 [19] OE (0) Output enable (active-high)
// 0x00040000 [18] DWIDTH (0) Data width
// 0x00030000 [17:16] IWIDTH (0x0) Configure whether this FIFO record is transferred with...
// 0x0000ffff [15:0] DATA (0x0000) Data pushed here will be clocked out falling edges of...
io_wo_32 direct_tx;
_REG_(QMI_DIRECT_RX_OFFSET) // QMI_DIRECT_RX
// Receive FIFO for direct mode
// 0x0000ffff [15:0] DIRECT_RX (0x0000) With each byte clocked out on the serial interface, one...
io_ro_32 direct_rx;
qmi_mem_hw_t m[2];
// (Description copied from array index 0 register QMI_ATRANS0 applies similarly to other array indexes)
_REG_(QMI_ATRANS0_OFFSET) // QMI_ATRANS0
// Configure address translation for XIP virtual addresses 0x000000 through 0x3fffff (a 4 MiB window starting at +0 MiB).
// 0x07ff0000 [26:16] SIZE (0x400) Translation aperture size for this virtual address...
// 0x00000fff [11:0] BASE (0x000) Physical address base for this virtual address range, in...
io_rw_32 atrans[8];
} qmi_hw_t;
#define qmi_hw ((qmi_hw_t *)XIP_QMI_BASE)
static_assert(sizeof (qmi_hw_t) == 0x0054, "");
#endif // _HARDWARE_STRUCTS_QMI_H

View File

@@ -0,0 +1,166 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_RESETS_H
#define _HARDWARE_STRUCTS_RESETS_H
/**
* \file rp2350/resets.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/resets.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_resets
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/resets.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
/** \brief Resettable component numbers on RP2350 (used as typedef \ref reset_num_t)
* \ingroup hardware_resets
*/
typedef enum reset_num_rp2350 {
RESET_ADC = 0, ///< Select ADC to be reset
RESET_BUSCTRL = 1, ///< Select BUSCTRL to be reset
RESET_DMA = 2, ///< Select DMA to be reset
RESET_HSTX = 3, ///< Select HSTX to be reset
RESET_I2C0 = 4, ///< Select I2C0 to be reset
RESET_I2C1 = 5, ///< Select I2C1 to be reset
RESET_IO_BANK0 = 6, ///< Select IO_BANK0 to be reset
RESET_IO_QSPI = 7, ///< Select IO_QSPI to be reset
RESET_JTAG = 8, ///< Select JTAG to be reset
RESET_PADS_BANK0 = 9, ///< Select PADS_BANK0 to be reset
RESET_PADS_QSPI = 10, ///< Select PADS_QSPI to be reset
RESET_PIO0 = 11, ///< Select PIO0 to be reset
RESET_PIO1 = 12, ///< Select PIO1 to be reset
RESET_PIO2 = 13, ///< Select PIO2 to be reset
RESET_PLL_SYS = 14, ///< Select PLL_SYS to be reset
RESET_PLL_USB = 15, ///< Select PLL_USB to be reset
RESET_PWM = 16, ///< Select PWM to be reset
RESET_SHA256 = 17, ///< Select SHA256 to be reset
RESET_SPI0 = 18, ///< Select SPI0 to be reset
RESET_SPI1 = 19, ///< Select SPI1 to be reset
RESET_SYSCFG = 20, ///< Select SYSCFG to be reset
RESET_SYSINFO = 21, ///< Select SYSINFO to be reset
RESET_TBMAN = 22, ///< Select TBMAN to be reset
RESET_TIMER0 = 23, ///< Select TIMER0 to be reset
RESET_TIMER1 = 24, ///< Select TIMER1 to be reset
RESET_TRNG = 25, ///< Select TRNG to be reset
RESET_UART0 = 26, ///< Select UART0 to be reset
RESET_UART1 = 27, ///< Select UART1 to be reset
RESET_USBCTRL = 28, ///< Select USBCTRL to be reset
RESET_COUNT
} reset_num_t;
/// \tag::resets_hw[]
typedef struct {
_REG_(RESETS_RESET_OFFSET) // RESETS_RESET
// 0x10000000 [28] USBCTRL (1)
// 0x08000000 [27] UART1 (1)
// 0x04000000 [26] UART0 (1)
// 0x02000000 [25] TRNG (1)
// 0x01000000 [24] TIMER1 (1)
// 0x00800000 [23] TIMER0 (1)
// 0x00400000 [22] TBMAN (1)
// 0x00200000 [21] SYSINFO (1)
// 0x00100000 [20] SYSCFG (1)
// 0x00080000 [19] SPI1 (1)
// 0x00040000 [18] SPI0 (1)
// 0x00020000 [17] SHA256 (1)
// 0x00010000 [16] PWM (1)
// 0x00008000 [15] PLL_USB (1)
// 0x00004000 [14] PLL_SYS (1)
// 0x00002000 [13] PIO2 (1)
// 0x00001000 [12] PIO1 (1)
// 0x00000800 [11] PIO0 (1)
// 0x00000400 [10] PADS_QSPI (1)
// 0x00000200 [9] PADS_BANK0 (1)
// 0x00000100 [8] JTAG (1)
// 0x00000080 [7] IO_QSPI (1)
// 0x00000040 [6] IO_BANK0 (1)
// 0x00000020 [5] I2C1 (1)
// 0x00000010 [4] I2C0 (1)
// 0x00000008 [3] HSTX (1)
// 0x00000004 [2] DMA (1)
// 0x00000002 [1] BUSCTRL (1)
// 0x00000001 [0] ADC (1)
io_rw_32 reset;
_REG_(RESETS_WDSEL_OFFSET) // RESETS_WDSEL
// 0x10000000 [28] USBCTRL (0)
// 0x08000000 [27] UART1 (0)
// 0x04000000 [26] UART0 (0)
// 0x02000000 [25] TRNG (0)
// 0x01000000 [24] TIMER1 (0)
// 0x00800000 [23] TIMER0 (0)
// 0x00400000 [22] TBMAN (0)
// 0x00200000 [21] SYSINFO (0)
// 0x00100000 [20] SYSCFG (0)
// 0x00080000 [19] SPI1 (0)
// 0x00040000 [18] SPI0 (0)
// 0x00020000 [17] SHA256 (0)
// 0x00010000 [16] PWM (0)
// 0x00008000 [15] PLL_USB (0)
// 0x00004000 [14] PLL_SYS (0)
// 0x00002000 [13] PIO2 (0)
// 0x00001000 [12] PIO1 (0)
// 0x00000800 [11] PIO0 (0)
// 0x00000400 [10] PADS_QSPI (0)
// 0x00000200 [9] PADS_BANK0 (0)
// 0x00000100 [8] JTAG (0)
// 0x00000080 [7] IO_QSPI (0)
// 0x00000040 [6] IO_BANK0 (0)
// 0x00000020 [5] I2C1 (0)
// 0x00000010 [4] I2C0 (0)
// 0x00000008 [3] HSTX (0)
// 0x00000004 [2] DMA (0)
// 0x00000002 [1] BUSCTRL (0)
// 0x00000001 [0] ADC (0)
io_rw_32 wdsel;
_REG_(RESETS_RESET_DONE_OFFSET) // RESETS_RESET_DONE
// 0x10000000 [28] USBCTRL (0)
// 0x08000000 [27] UART1 (0)
// 0x04000000 [26] UART0 (0)
// 0x02000000 [25] TRNG (0)
// 0x01000000 [24] TIMER1 (0)
// 0x00800000 [23] TIMER0 (0)
// 0x00400000 [22] TBMAN (0)
// 0x00200000 [21] SYSINFO (0)
// 0x00100000 [20] SYSCFG (0)
// 0x00080000 [19] SPI1 (0)
// 0x00040000 [18] SPI0 (0)
// 0x00020000 [17] SHA256 (0)
// 0x00010000 [16] PWM (0)
// 0x00008000 [15] PLL_USB (0)
// 0x00004000 [14] PLL_SYS (0)
// 0x00002000 [13] PIO2 (0)
// 0x00001000 [12] PIO1 (0)
// 0x00000800 [11] PIO0 (0)
// 0x00000400 [10] PADS_QSPI (0)
// 0x00000200 [9] PADS_BANK0 (0)
// 0x00000100 [8] JTAG (0)
// 0x00000080 [7] IO_QSPI (0)
// 0x00000040 [6] IO_BANK0 (0)
// 0x00000020 [5] I2C1 (0)
// 0x00000010 [4] I2C0 (0)
// 0x00000008 [3] HSTX (0)
// 0x00000004 [2] DMA (0)
// 0x00000002 [1] BUSCTRL (0)
// 0x00000001 [0] ADC (0)
io_ro_32 reset_done;
} resets_hw_t;
/// \end::resets_hw[]
#define resets_hw ((resets_hw_t *)RESETS_BASE)
static_assert(sizeof (resets_hw_t) == 0x000c, "");
#endif // _HARDWARE_STRUCTS_RESETS_H

View File

@@ -0,0 +1,99 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_ROSC_H
#define _HARDWARE_STRUCTS_ROSC_H
/**
* \file rp2350/rosc.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/rosc.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_rosc
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/rosc.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(ROSC_CTRL_OFFSET) // ROSC_CTRL
// Ring Oscillator control
// 0x00fff000 [23:12] ENABLE (-) On power-up this field is initialised to ENABLE +
// 0x00000fff [11:0] FREQ_RANGE (0xaa0) Controls the number of delay stages in the ROSC ring +
io_rw_32 ctrl;
_REG_(ROSC_FREQA_OFFSET) // ROSC_FREQA
// Ring Oscillator frequency control A
// 0xffff0000 [31:16] PASSWD (0x0000) Set to 0x9696 to apply the settings +
// 0x00007000 [14:12] DS3 (0x0) Stage 3 drive strength
// 0x00000700 [10:8] DS2 (0x0) Stage 2 drive strength
// 0x00000080 [7] DS1_RANDOM (0) Randomises the stage 1 drive strength
// 0x00000070 [6:4] DS1 (0x0) Stage 1 drive strength
// 0x00000008 [3] DS0_RANDOM (0) Randomises the stage 0 drive strength
// 0x00000007 [2:0] DS0 (0x0) Stage 0 drive strength
io_rw_32 freqa;
_REG_(ROSC_FREQB_OFFSET) // ROSC_FREQB
// Ring Oscillator frequency control B
// 0xffff0000 [31:16] PASSWD (0x0000) Set to 0x9696 to apply the settings +
// 0x00007000 [14:12] DS7 (0x0) Stage 7 drive strength
// 0x00000700 [10:8] DS6 (0x0) Stage 6 drive strength
// 0x00000070 [6:4] DS5 (0x0) Stage 5 drive strength
// 0x00000007 [2:0] DS4 (0x0) Stage 4 drive strength
io_rw_32 freqb;
_REG_(ROSC_RANDOM_OFFSET) // ROSC_RANDOM
// Loads a value to the LFSR randomiser
// 0xffffffff [31:0] SEED (0x3f04b16d)
io_rw_32 random;
_REG_(ROSC_DORMANT_OFFSET) // ROSC_DORMANT
// Ring Oscillator pause control
// 0xffffffff [31:0] DORMANT (-) This is used to save power by pausing the ROSC +
io_rw_32 dormant;
_REG_(ROSC_DIV_OFFSET) // ROSC_DIV
// Controls the output divider
// 0x0000ffff [15:0] DIV (-) set to 0xaa00 + div where +
io_rw_32 div;
_REG_(ROSC_PHASE_OFFSET) // ROSC_PHASE
// Controls the phase shifted output
// 0x00000ff0 [11:4] PASSWD (0x00) set to 0xaa +
// 0x00000008 [3] ENABLE (1) enable the phase-shifted output +
// 0x00000004 [2] FLIP (0) invert the phase-shifted output +
// 0x00000003 [1:0] SHIFT (0x0) phase shift the phase-shifted output by SHIFT input clocks +
io_rw_32 phase;
_REG_(ROSC_STATUS_OFFSET) // ROSC_STATUS
// Ring Oscillator Status
// 0x80000000 [31] STABLE (0) Oscillator is running and stable
// 0x01000000 [24] BADWRITE (0) An invalid value has been written to CTRL_ENABLE or...
// 0x00010000 [16] DIV_RUNNING (-) post-divider is running +
// 0x00001000 [12] ENABLED (-) Oscillator is enabled but not necessarily running and stable +
io_rw_32 status;
_REG_(ROSC_RANDOMBIT_OFFSET) // ROSC_RANDOMBIT
// Returns a 1 bit random value
// 0x00000001 [0] RANDOMBIT (1)
io_ro_32 randombit;
_REG_(ROSC_COUNT_OFFSET) // ROSC_COUNT
// A down counter running at the ROSC frequency which counts to zero and stops.
// 0x0000ffff [15:0] COUNT (0x0000)
io_rw_32 count;
} rosc_hw_t;
#define rosc_hw ((rosc_hw_t *)ROSC_BASE)
static_assert(sizeof (rosc_hw_t) == 0x0028, "");
#endif // _HARDWARE_STRUCTS_ROSC_H

View File

@@ -0,0 +1,65 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_SAU_H
#define _HARDWARE_STRUCTS_SAU_H
/**
* \file rp2350/sau.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/m33.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_m33
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/m33.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
#if defined(__riscv) && PICO_FORBID_ARM_HEADERS_ON_RISCV
#error "Arm header included in a RISC-V build with PICO_FORBID_ARM_HEADERS_ON_RISCV=1"
#endif
typedef struct {
_REG_(M33_SAU_CTRL_OFFSET) // M33_SAU_CTRL
// Allows enabling of the Security Attribution Unit
// 0x00000002 [1] ALLNS (0) When SAU_CTRL
// 0x00000001 [0] ENABLE (0) Enables the SAU
io_rw_32 ctrl;
_REG_(M33_SAU_TYPE_OFFSET) // M33_SAU_TYPE
// Indicates the number of regions implemented by the Security Attribution Unit
// 0x000000ff [7:0] SREGION (0x08) The number of implemented SAU regions
io_ro_32 type;
_REG_(M33_SAU_RNR_OFFSET) // M33_SAU_RNR
// Selects the region currently accessed by SAU_RBAR and SAU_RLAR
// 0x000000ff [7:0] REGION (0x00) Indicates the SAU region accessed by SAU_RBAR and SAU_RLAR
io_rw_32 rnr;
_REG_(M33_SAU_RBAR_OFFSET) // M33_SAU_RBAR
// Provides indirect read and write access to the base address of the currently selected SAU region
// 0xffffffe0 [31:5] BADDR (0x0000000) Holds bits [31:5] of the base address for the selected SAU region
io_rw_32 rbar;
_REG_(M33_SAU_RLAR_OFFSET) // M33_SAU_RLAR
// Provides indirect read and write access to the limit address of the currently selected SAU region
// 0xffffffe0 [31:5] LADDR (0x0000000) Holds bits [31:5] of the limit address for the selected...
// 0x00000002 [1] NSC (0) Controls whether Non-secure state is permitted to...
// 0x00000001 [0] ENABLE (0) SAU region enable
io_rw_32 rlar;
} armv8m_sau_hw_t;
#define sau_hw ((armv8m_sau_hw_t *)(PPB_BASE + M33_SAU_CTRL_OFFSET))
#define sau_ns_hw ((armv8m_sau_hw_t *)(PPB_NONSEC_BASE + M33_SAU_CTRL_OFFSET))
static_assert(sizeof (armv8m_sau_hw_t) == 0x0014, "");
#endif // _HARDWARE_STRUCTS_SAU_H

View File

@@ -0,0 +1,264 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_SCB_H
#define _HARDWARE_STRUCTS_SCB_H
/**
* \file rp2350/scb.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/m33.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_m33
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/m33.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
#if defined(__riscv) && PICO_FORBID_ARM_HEADERS_ON_RISCV
#error "Arm header included in a RISC-V build with PICO_FORBID_ARM_HEADERS_ON_RISCV=1"
#endif
typedef struct {
_REG_(M33_CPUID_OFFSET) // M33_CPUID
// Provides identification information for the PE, including an implementer code for the device and...
// 0xff000000 [31:24] IMPLEMENTER (0x41) This field must hold an implementer code that has been...
// 0x00f00000 [23:20] VARIANT (0x1) IMPLEMENTATION DEFINED variant number
// 0x000f0000 [19:16] ARCHITECTURE (0xf) Defines the Architecture implemented by the PE
// 0x0000fff0 [15:4] PARTNO (0xd21) IMPLEMENTATION DEFINED primary part number for the device
// 0x0000000f [3:0] REVISION (0x0) IMPLEMENTATION DEFINED revision number for the device
io_ro_32 cpuid;
_REG_(M33_ICSR_OFFSET) // M33_ICSR
// Controls and provides status information for NMI, PendSV, SysTick and interrupts
// 0x80000000 [31] PENDNMISET (0) Indicates whether the NMI exception is pending
// 0x40000000 [30] PENDNMICLR (0) Allows the NMI exception pend state to be cleared
// 0x10000000 [28] PENDSVSET (0) Indicates whether the PendSV `FTSSS exception is pending
// 0x08000000 [27] PENDSVCLR (0) Allows the PendSV exception pend state to be cleared `FTSSS
// 0x04000000 [26] PENDSTSET (0) Indicates whether the SysTick `FTSSS exception is pending
// 0x02000000 [25] PENDSTCLR (0) Allows the SysTick exception pend state to be cleared `FTSSS
// 0x01000000 [24] STTNS (0) Controls whether in a single SysTick implementation, the...
// 0x00800000 [23] ISRPREEMPT (0) Indicates whether a pending exception will be serviced...
// 0x00400000 [22] ISRPENDING (0) Indicates whether an external interrupt, generated by...
// 0x001ff000 [20:12] VECTPENDING (0x000) The exception number of the highest priority pending and...
// 0x00000800 [11] RETTOBASE (0) In Handler mode, indicates whether there is more than...
// 0x000001ff [8:0] VECTACTIVE (0x000) The exception number of the current executing exception
io_rw_32 icsr;
_REG_(M33_VTOR_OFFSET) // M33_VTOR
// Vector Table Offset Register
// 0xffffff80 [31:7] TBLOFF (0x0000000) Vector table base offset field
io_rw_32 vtor;
_REG_(M33_AIRCR_OFFSET) // M33_AIRCR
// Application Interrupt and Reset Control Register
// 0xffff0000 [31:16] VECTKEY (0x0000) Register key: +
// 0x00008000 [15] ENDIANESS (0) Data endianness implemented: +
// 0x00004000 [14] PRIS (0) Prioritize Secure exceptions
// 0x00002000 [13] BFHFNMINS (0) BusFault, HardFault, and NMI Non-secure enable
// 0x00000700 [10:8] PRIGROUP (0x0) Interrupt priority grouping field
// 0x00000008 [3] SYSRESETREQS (0) System reset request, Secure state only
// 0x00000004 [2] SYSRESETREQ (0) Writing 1 to this bit causes the SYSRESETREQ signal to...
// 0x00000002 [1] VECTCLRACTIVE (0) Clears all active state information for fixed and...
io_rw_32 aircr;
_REG_(M33_SCR_OFFSET) // M33_SCR
// System Control Register
// 0x00000010 [4] SEVONPEND (0) Send Event on Pending bit: +
// 0x00000008 [3] SLEEPDEEPS (0) 0 SLEEPDEEP is available to both security states +
// 0x00000004 [2] SLEEPDEEP (0) Controls whether the processor uses sleep or deep sleep...
// 0x00000002 [1] SLEEPONEXIT (0) Indicates sleep-on-exit when returning from Handler mode...
io_rw_32 scr;
_REG_(M33_CCR_OFFSET) // M33_CCR
// Sets or returns configuration and control data
// 0x00040000 [18] BP (0) Enables program flow prediction `FTSSS
// 0x00020000 [17] IC (0) This is a global enable bit for instruction caches in...
// 0x00010000 [16] DC (0) Enables data caching of all data accesses to Normal memory `FTSSS
// 0x00000400 [10] STKOFHFNMIGN (0) Controls the effect of a stack limit violation while...
// 0x00000200 [9] RES1 (1) Reserved, RES1
// 0x00000100 [8] BFHFNMIGN (0) Determines the effect of precise BusFaults on handlers...
// 0x00000010 [4] DIV_0_TRP (0) Controls the generation of a DIVBYZERO UsageFault when...
// 0x00000008 [3] UNALIGN_TRP (0) Controls the trapping of unaligned word or halfword accesses
// 0x00000002 [1] USERSETMPEND (0) Determines whether unprivileged accesses are permitted...
// 0x00000001 [0] RES1_1 (1) Reserved, RES1
io_rw_32 ccr;
// (Description copied from array index 0 register M33_SHPR1 applies similarly to other array indexes)
_REG_(M33_SHPR1_OFFSET) // M33_SHPR1
// Sets or returns priority for system handlers 4 - 7
// 0xe0000000 [31:29] PRI_7_3 (0x0) Priority of system handler 7, SecureFault
// 0x00e00000 [23:21] PRI_6_3 (0x0) Priority of system handler 6, SecureFault
// 0x0000e000 [15:13] PRI_5_3 (0x0) Priority of system handler 5, SecureFault
// 0x000000e0 [7:5] PRI_4_3 (0x0) Priority of system handler 4, SecureFault
io_rw_32 shpr[3];
_REG_(M33_SHCSR_OFFSET) // M33_SHCSR
// Provides access to the active and pending status of system exceptions
// 0x00200000 [21] HARDFAULTPENDED (0) `IAAMO the pending state of the HardFault exception `CTTSSS
// 0x00100000 [20] SECUREFAULTPENDED (0) `IAAMO the pending state of the SecureFault exception
// 0x00080000 [19] SECUREFAULTENA (0) `DW the SecureFault exception is enabled
// 0x00040000 [18] USGFAULTENA (0) `DW the UsageFault exception is enabled `FTSSS
// 0x00020000 [17] BUSFAULTENA (0) `DW the BusFault exception is enabled
// 0x00010000 [16] MEMFAULTENA (0) `DW the MemManage exception is enabled `FTSSS
// 0x00008000 [15] SVCALLPENDED (0) `IAAMO the pending state of the SVCall exception `FTSSS
// 0x00004000 [14] BUSFAULTPENDED (0) `IAAMO the pending state of the BusFault exception
// 0x00002000 [13] MEMFAULTPENDED (0) `IAAMO the pending state of the MemManage exception `FTSSS
// 0x00001000 [12] USGFAULTPENDED (0) The UsageFault exception is banked between Security...
// 0x00000800 [11] SYSTICKACT (0) `IAAMO the active state of the SysTick exception `FTSSS
// 0x00000400 [10] PENDSVACT (0) `IAAMO the active state of the PendSV exception `FTSSS
// 0x00000100 [8] MONITORACT (0) `IAAMO the active state of the DebugMonitor exception
// 0x00000080 [7] SVCALLACT (0) `IAAMO the active state of the SVCall exception `FTSSS
// 0x00000020 [5] NMIACT (0) `IAAMO the active state of the NMI exception
// 0x00000010 [4] SECUREFAULTACT (0) `IAAMO the active state of the SecureFault exception
// 0x00000008 [3] USGFAULTACT (0) `IAAMO the active state of the UsageFault exception `FTSSS
// 0x00000004 [2] HARDFAULTACT (0) Indicates and allows limited modification of the active...
// 0x00000002 [1] BUSFAULTACT (0) `IAAMO the active state of the BusFault exception
// 0x00000001 [0] MEMFAULTACT (0) `IAAMO the active state of the MemManage exception `FTSSS
io_rw_32 shcsr;
_REG_(M33_CFSR_OFFSET) // M33_CFSR
// Contains the three Configurable Fault Status Registers
// 0x02000000 [25] UFSR_DIVBYZERO (0) Sticky flag indicating whether an integer division by...
// 0x01000000 [24] UFSR_UNALIGNED (0) Sticky flag indicating whether an unaligned access error...
// 0x00100000 [20] UFSR_STKOF (0) Sticky flag indicating whether a stack overflow error...
// 0x00080000 [19] UFSR_NOCP (0) Sticky flag indicating whether a coprocessor disabled or...
// 0x00040000 [18] UFSR_INVPC (0) Sticky flag indicating whether an integrity check error...
// 0x00020000 [17] UFSR_INVSTATE (0) Sticky flag indicating whether an EPSR
// 0x00010000 [16] UFSR_UNDEFINSTR (0) Sticky flag indicating whether an undefined instruction...
// 0x00008000 [15] BFSR_BFARVALID (0) Indicates validity of the contents of the BFAR register
// 0x00002000 [13] BFSR_LSPERR (0) Records whether a BusFault occurred during FP lazy state...
// 0x00001000 [12] BFSR_STKERR (0) Records whether a derived BusFault occurred during...
// 0x00000800 [11] BFSR_UNSTKERR (0) Records whether a derived BusFault occurred during...
// 0x00000400 [10] BFSR_IMPRECISERR (0) Records whether an imprecise data access error has occurred
// 0x00000200 [9] BFSR_PRECISERR (0) Records whether a precise data access error has occurred
// 0x00000100 [8] BFSR_IBUSERR (0) Records whether a BusFault on an instruction prefetch...
// 0x000000ff [7:0] MMFSR (0x00) Provides information on MemManage exceptions
io_rw_32 cfsr;
_REG_(M33_HFSR_OFFSET) // M33_HFSR
// Shows the cause of any HardFaults
// 0x80000000 [31] DEBUGEVT (0) Indicates when a Debug event has occurred
// 0x40000000 [30] FORCED (0) Indicates that a fault with configurable priority has...
// 0x00000002 [1] VECTTBL (0) Indicates when a fault has occurred because of a vector...
io_rw_32 hfsr;
_REG_(M33_DFSR_OFFSET) // M33_DFSR
// Shows which debug event occurred
// 0x00000010 [4] EXTERNAL (0) Sticky flag indicating whether an External debug request...
// 0x00000008 [3] VCATCH (0) Sticky flag indicating whether a Vector catch debug...
// 0x00000004 [2] DWTTRAP (0) Sticky flag indicating whether a Watchpoint debug event...
// 0x00000002 [1] BKPT (0) Sticky flag indicating whether a Breakpoint debug event...
// 0x00000001 [0] HALTED (0) Sticky flag indicating that a Halt request debug event...
io_rw_32 dfsr;
_REG_(M33_MMFAR_OFFSET) // M33_MMFAR
// Shows the address of the memory location that caused an MPU fault
// 0xffffffff [31:0] ADDRESS (0x00000000) This register is updated with the address of a location...
io_rw_32 mmfar;
_REG_(M33_BFAR_OFFSET) // M33_BFAR
// Shows the address associated with a precise data access BusFault
// 0xffffffff [31:0] ADDRESS (0x00000000) This register is updated with the address of a location...
io_rw_32 bfar;
uint32_t _pad0;
// (Description copied from array index 0 register M33_ID_PFR0 applies similarly to other array indexes)
_REG_(M33_ID_PFR0_OFFSET) // M33_ID_PFR0
// Gives top-level information about the instruction set supported by the PE
// 0x000000f0 [7:4] STATE1 (0x3) T32 instruction set support
// 0x0000000f [3:0] STATE0 (0x0) A32 instruction set support
io_ro_32 id_pfr[2];
_REG_(M33_ID_DFR0_OFFSET) // M33_ID_DFR0
// Provides top level information about the debug system
// 0x00f00000 [23:20] MPROFDBG (0x2) Indicates the supported M-profile debug architecture
io_ro_32 id_dfr0;
_REG_(M33_ID_AFR0_OFFSET) // M33_ID_AFR0
// Provides information about the IMPLEMENTATION DEFINED features of the PE
// 0x0000f000 [15:12] IMPDEF3 (0x0) IMPLEMENTATION DEFINED meaning
// 0x00000f00 [11:8] IMPDEF2 (0x0) IMPLEMENTATION DEFINED meaning
// 0x000000f0 [7:4] IMPDEF1 (0x0) IMPLEMENTATION DEFINED meaning
// 0x0000000f [3:0] IMPDEF0 (0x0) IMPLEMENTATION DEFINED meaning
io_ro_32 id_afr0;
// (Description copied from array index 0 register M33_ID_MMFR0 applies similarly to other array indexes)
_REG_(M33_ID_MMFR0_OFFSET) // M33_ID_MMFR0
// Provides information about the implemented memory model and memory management support
// 0x00f00000 [23:20] AUXREG (0x1) Indicates support for Auxiliary Control Registers
// 0x000f0000 [19:16] TCM (0x0) Indicates support for tightly coupled memories (TCMs)
// 0x0000f000 [15:12] SHARELVL (0x1) Indicates the number of shareability levels implemented
// 0x00000f00 [11:8] OUTERSHR (0xf) Indicates the outermost shareability domain implemented
// 0x000000f0 [7:4] PMSA (0x4) Indicates support for the protected memory system...
io_ro_32 id_mmfr[4];
// (Description copied from array index 0 register M33_ID_ISAR0 applies similarly to other array indexes)
_REG_(M33_ID_ISAR0_OFFSET) // M33_ID_ISAR0
// Provides information about the instruction set implemented by the PE
// 0x0f000000 [27:24] DIVIDE (0x8) Indicates the supported Divide instructions
// 0x00f00000 [23:20] DEBUG (0x0) Indicates the implemented Debug instructions
// 0x000f0000 [19:16] COPROC (0x9) Indicates the supported Coprocessor instructions
// 0x0000f000 [15:12] CMPBRANCH (0x2) Indicates the supported combined Compare and Branch instructions
// 0x00000f00 [11:8] BITFIELD (0x3) Indicates the supported bit field instructions
// 0x000000f0 [7:4] BITCOUNT (0x0) Indicates the supported bit count instructions
io_ro_32 id_isar[6];
uint32_t _pad1;
_REG_(M33_CTR_OFFSET) // M33_CTR
// Provides information about the architecture of the caches
// 0x80000000 [31] RES1 (1) Reserved, RES1
// 0x0f000000 [27:24] CWG (0x0) Log2 of the number of words of the maximum size of...
// 0x00f00000 [23:20] ERG (0x0) Log2 of the number of words of the maximum size of the...
// 0x000f0000 [19:16] DMINLINE (0x0) Log2 of the number of words in the smallest cache line...
// 0x0000c000 [15:14] RES1_1 (0x3) Reserved, RES1
// 0x0000000f [3:0] IMINLINE (0x0) Log2 of the number of words in the smallest cache line...
io_ro_32 ctr;
uint32_t _pad2[2];
_REG_(M33_CPACR_OFFSET) // M33_CPACR
// Specifies the access privileges for coprocessors and the FP Extension
// 0x00c00000 [23:22] CP11 (0x0) The value in this field is ignored
// 0x00300000 [21:20] CP10 (0x0) Defines the access rights for the floating-point functionality
// 0x0000c000 [15:14] CP7 (0x0) Controls access privileges for coprocessor 7
// 0x00003000 [13:12] CP6 (0x0) Controls access privileges for coprocessor 6
// 0x00000c00 [11:10] CP5 (0x0) Controls access privileges for coprocessor 5
// 0x00000300 [9:8] CP4 (0x0) Controls access privileges for coprocessor 4
// 0x000000c0 [7:6] CP3 (0x0) Controls access privileges for coprocessor 3
// 0x00000030 [5:4] CP2 (0x0) Controls access privileges for coprocessor 2
// 0x0000000c [3:2] CP1 (0x0) Controls access privileges for coprocessor 1
// 0x00000003 [1:0] CP0 (0x0) Controls access privileges for coprocessor 0
io_rw_32 cpacr;
_REG_(M33_NSACR_OFFSET) // M33_NSACR
// Defines the Non-secure access permissions for both the FP Extension and coprocessors CP0 to CP7
// 0x00000800 [11] CP11 (0) Enables Non-secure access to the Floating-point Extension
// 0x00000400 [10] CP10 (0) Enables Non-secure access to the Floating-point Extension
// 0x00000080 [7] CP7 (0) Enables Non-secure access to coprocessor CP7
// 0x00000040 [6] CP6 (0) Enables Non-secure access to coprocessor CP6
// 0x00000020 [5] CP5 (0) Enables Non-secure access to coprocessor CP5
// 0x00000010 [4] CP4 (0) Enables Non-secure access to coprocessor CP4
// 0x00000008 [3] CP3 (0) Enables Non-secure access to coprocessor CP3
// 0x00000004 [2] CP2 (0) Enables Non-secure access to coprocessor CP2
// 0x00000002 [1] CP1 (0) Enables Non-secure access to coprocessor CP1
// 0x00000001 [0] CP0 (0) Enables Non-secure access to coprocessor CP0
io_rw_32 nsacr;
} armv8m_scb_hw_t;
#define scb_hw ((armv8m_scb_hw_t *)(PPB_BASE + M33_CPUID_OFFSET))
#define scb_ns_hw ((armv8m_scb_hw_t *)(PPB_NONSEC_BASE + M33_CPUID_OFFSET))
static_assert(sizeof (armv8m_scb_hw_t) == 0x0090, "");
#endif // _HARDWARE_STRUCTS_SCB_H

View File

@@ -0,0 +1,53 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_SHA256_H
#define _HARDWARE_STRUCTS_SHA256_H
/**
* \file rp2350/sha256.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/sha256.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_sha256
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/sha256.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(SHA256_CSR_OFFSET) // SHA256_CSR
// Control and status register
// 0x00001000 [12] BSWAP (1) Enable byte swapping of 32-bit values at the point they...
// 0x00000300 [9:8] DMA_SIZE (0x2) Configure DREQ logic for the correct DMA data size
// 0x00000010 [4] ERR_WDATA_NOT_RDY (0) Set when a write occurs whilst the SHA-256 core is not...
// 0x00000004 [2] SUM_VLD (1) If 1, the SHA-256 checksum presented in registers SUM0...
// 0x00000002 [1] WDATA_RDY (1) If 1, the SHA-256 core is ready to accept more data...
// 0x00000001 [0] START (0) Write 1 to prepare the SHA-256 core for a new checksum
io_rw_32 csr;
_REG_(SHA256_WDATA_OFFSET) // SHA256_WDATA
// Write data register
// 0xffffffff [31:0] WDATA (0x00000000) After pulsing START and writing 16 words of data to this...
io_wo_32 wdata;
// (Description copied from array index 0 register SHA256_SUM0 applies similarly to other array indexes)
_REG_(SHA256_SUM0_OFFSET) // SHA256_SUM0
// 256-bit checksum result
// 0xffffffff [31:0] SUM0 (0x00000000)
io_ro_32 sum[8];
} sha256_hw_t;
#define sha256_hw ((sha256_hw_t *)SHA256_BASE)
static_assert(sizeof (sha256_hw_t) == 0x0028, "");
#endif // _HARDWARE_STRUCTS_SHA256_H

View File

@@ -0,0 +1,336 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_SIO_H
#define _HARDWARE_STRUCTS_SIO_H
/**
* \file rp2350/sio.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/sio.h"
#include "hardware/structs/interp.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_sio
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/sio.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(SIO_CPUID_OFFSET) // SIO_CPUID
// Processor core identifier
// 0xffffffff [31:0] CPUID (-) Value is 0 when read from processor core 0, and 1 when...
io_ro_32 cpuid;
_REG_(SIO_GPIO_IN_OFFSET) // SIO_GPIO_IN
// Input value for GPIO0
// 0xffffffff [31:0] GPIO_IN (0x00000000)
io_ro_32 gpio_in;
_REG_(SIO_GPIO_HI_IN_OFFSET) // SIO_GPIO_HI_IN
// Input value on GPIO32
// 0xf0000000 [31:28] QSPI_SD (0x0) Input value on QSPI SD0 (MOSI), SD1 (MISO), SD2 and SD3 pins
// 0x08000000 [27] QSPI_CSN (0) Input value on QSPI CSn pin
// 0x04000000 [26] QSPI_SCK (0) Input value on QSPI SCK pin
// 0x02000000 [25] USB_DM (0) Input value on USB D- pin
// 0x01000000 [24] USB_DP (0) Input value on USB D+ pin
// 0x0000ffff [15:0] GPIO (0x0000) Input value on GPIO32
io_ro_32 gpio_hi_in;
uint32_t _pad0;
_REG_(SIO_GPIO_OUT_OFFSET) // SIO_GPIO_OUT
// GPIO0
// 0xffffffff [31:0] GPIO_OUT (0x00000000) Set output level (1/0 -> high/low) for GPIO0
io_rw_32 gpio_out;
_REG_(SIO_GPIO_HI_OUT_OFFSET) // SIO_GPIO_HI_OUT
// Output value for GPIO32
// 0xf0000000 [31:28] QSPI_SD (0x0) Output value for QSPI SD0 (MOSI), SD1 (MISO), SD2 and SD3 pins
// 0x08000000 [27] QSPI_CSN (0) Output value for QSPI CSn pin
// 0x04000000 [26] QSPI_SCK (0) Output value for QSPI SCK pin
// 0x02000000 [25] USB_DM (0) Output value for USB D- pin
// 0x01000000 [24] USB_DP (0) Output value for USB D+ pin
// 0x0000ffff [15:0] GPIO (0x0000) Output value for GPIO32
io_rw_32 gpio_hi_out;
_REG_(SIO_GPIO_OUT_SET_OFFSET) // SIO_GPIO_OUT_SET
// GPIO0
// 0xffffffff [31:0] GPIO_OUT_SET (0x00000000) Perform an atomic bit-set on GPIO_OUT, i
io_wo_32 gpio_set;
_REG_(SIO_GPIO_HI_OUT_SET_OFFSET) // SIO_GPIO_HI_OUT_SET
// Output value set for GPIO32
// 0xf0000000 [31:28] QSPI_SD (0x0)
// 0x08000000 [27] QSPI_CSN (0)
// 0x04000000 [26] QSPI_SCK (0)
// 0x02000000 [25] USB_DM (0)
// 0x01000000 [24] USB_DP (0)
// 0x0000ffff [15:0] GPIO (0x0000)
io_wo_32 gpio_hi_set;
_REG_(SIO_GPIO_OUT_CLR_OFFSET) // SIO_GPIO_OUT_CLR
// GPIO0
// 0xffffffff [31:0] GPIO_OUT_CLR (0x00000000) Perform an atomic bit-clear on GPIO_OUT, i
io_wo_32 gpio_clr;
_REG_(SIO_GPIO_HI_OUT_CLR_OFFSET) // SIO_GPIO_HI_OUT_CLR
// Output value clear for GPIO32
// 0xf0000000 [31:28] QSPI_SD (0x0)
// 0x08000000 [27] QSPI_CSN (0)
// 0x04000000 [26] QSPI_SCK (0)
// 0x02000000 [25] USB_DM (0)
// 0x01000000 [24] USB_DP (0)
// 0x0000ffff [15:0] GPIO (0x0000)
io_wo_32 gpio_hi_clr;
_REG_(SIO_GPIO_OUT_XOR_OFFSET) // SIO_GPIO_OUT_XOR
// GPIO0
// 0xffffffff [31:0] GPIO_OUT_XOR (0x00000000) Perform an atomic bitwise XOR on GPIO_OUT, i
io_wo_32 gpio_togl;
_REG_(SIO_GPIO_HI_OUT_XOR_OFFSET) // SIO_GPIO_HI_OUT_XOR
// Output value XOR for GPIO32
// 0xf0000000 [31:28] QSPI_SD (0x0)
// 0x08000000 [27] QSPI_CSN (0)
// 0x04000000 [26] QSPI_SCK (0)
// 0x02000000 [25] USB_DM (0)
// 0x01000000 [24] USB_DP (0)
// 0x0000ffff [15:0] GPIO (0x0000)
io_wo_32 gpio_hi_togl;
_REG_(SIO_GPIO_OE_OFFSET) // SIO_GPIO_OE
// GPIO0
// 0xffffffff [31:0] GPIO_OE (0x00000000) Set output enable (1/0 -> output/input) for GPIO0
io_rw_32 gpio_oe;
_REG_(SIO_GPIO_HI_OE_OFFSET) // SIO_GPIO_HI_OE
// Output enable value for GPIO32
// 0xf0000000 [31:28] QSPI_SD (0x0) Output enable value for QSPI SD0 (MOSI), SD1 (MISO), SD2...
// 0x08000000 [27] QSPI_CSN (0) Output enable value for QSPI CSn pin
// 0x04000000 [26] QSPI_SCK (0) Output enable value for QSPI SCK pin
// 0x02000000 [25] USB_DM (0) Output enable value for USB D- pin
// 0x01000000 [24] USB_DP (0) Output enable value for USB D+ pin
// 0x0000ffff [15:0] GPIO (0x0000) Output enable value for GPIO32
io_rw_32 gpio_hi_oe;
_REG_(SIO_GPIO_OE_SET_OFFSET) // SIO_GPIO_OE_SET
// GPIO0
// 0xffffffff [31:0] GPIO_OE_SET (0x00000000) Perform an atomic bit-set on GPIO_OE, i
io_wo_32 gpio_oe_set;
_REG_(SIO_GPIO_HI_OE_SET_OFFSET) // SIO_GPIO_HI_OE_SET
// Output enable set for GPIO32
// 0xf0000000 [31:28] QSPI_SD (0x0)
// 0x08000000 [27] QSPI_CSN (0)
// 0x04000000 [26] QSPI_SCK (0)
// 0x02000000 [25] USB_DM (0)
// 0x01000000 [24] USB_DP (0)
// 0x0000ffff [15:0] GPIO (0x0000)
io_wo_32 gpio_hi_oe_set;
_REG_(SIO_GPIO_OE_CLR_OFFSET) // SIO_GPIO_OE_CLR
// GPIO0
// 0xffffffff [31:0] GPIO_OE_CLR (0x00000000) Perform an atomic bit-clear on GPIO_OE, i
io_wo_32 gpio_oe_clr;
_REG_(SIO_GPIO_HI_OE_CLR_OFFSET) // SIO_GPIO_HI_OE_CLR
// Output enable clear for GPIO32
// 0xf0000000 [31:28] QSPI_SD (0x0)
// 0x08000000 [27] QSPI_CSN (0)
// 0x04000000 [26] QSPI_SCK (0)
// 0x02000000 [25] USB_DM (0)
// 0x01000000 [24] USB_DP (0)
// 0x0000ffff [15:0] GPIO (0x0000)
io_wo_32 gpio_hi_oe_clr;
_REG_(SIO_GPIO_OE_XOR_OFFSET) // SIO_GPIO_OE_XOR
// GPIO0
// 0xffffffff [31:0] GPIO_OE_XOR (0x00000000) Perform an atomic bitwise XOR on GPIO_OE, i
io_wo_32 gpio_oe_togl;
_REG_(SIO_GPIO_HI_OE_XOR_OFFSET) // SIO_GPIO_HI_OE_XOR
// Output enable XOR for GPIO32
// 0xf0000000 [31:28] QSPI_SD (0x0)
// 0x08000000 [27] QSPI_CSN (0)
// 0x04000000 [26] QSPI_SCK (0)
// 0x02000000 [25] USB_DM (0)
// 0x01000000 [24] USB_DP (0)
// 0x0000ffff [15:0] GPIO (0x0000)
io_wo_32 gpio_hi_oe_togl;
_REG_(SIO_FIFO_ST_OFFSET) // SIO_FIFO_ST
// Status register for inter-core FIFOs (mailboxes).
// 0x00000008 [3] ROE (0) Sticky flag indicating the RX FIFO was read when empty
// 0x00000004 [2] WOF (0) Sticky flag indicating the TX FIFO was written when full
// 0x00000002 [1] RDY (1) Value is 1 if this core's TX FIFO is not full (i
// 0x00000001 [0] VLD (0) Value is 1 if this core's RX FIFO is not empty (i
io_rw_32 fifo_st;
_REG_(SIO_FIFO_WR_OFFSET) // SIO_FIFO_WR
// Write access to this core's TX FIFO
// 0xffffffff [31:0] FIFO_WR (0x00000000)
io_wo_32 fifo_wr;
_REG_(SIO_FIFO_RD_OFFSET) // SIO_FIFO_RD
// Read access to this core's RX FIFO
// 0xffffffff [31:0] FIFO_RD (-)
io_ro_32 fifo_rd;
_REG_(SIO_SPINLOCK_ST_OFFSET) // SIO_SPINLOCK_ST
// Spinlock state
// 0xffffffff [31:0] SPINLOCK_ST (0x00000000)
io_ro_32 spinlock_st;
uint32_t _pad1[8];
interp_hw_t interp[2];
// (Description copied from array index 0 register SIO_SPINLOCK0 applies similarly to other array indexes)
_REG_(SIO_SPINLOCK0_OFFSET) // SIO_SPINLOCK0
// Spinlock register 0
// 0xffffffff [31:0] SPINLOCK0 (0x00000000)
io_rw_32 spinlock[32];
_REG_(SIO_DOORBELL_OUT_SET_OFFSET) // SIO_DOORBELL_OUT_SET
// Trigger a doorbell interrupt on the opposite core
// 0x000000ff [7:0] DOORBELL_OUT_SET (0x00)
io_rw_32 doorbell_out_set;
_REG_(SIO_DOORBELL_OUT_CLR_OFFSET) // SIO_DOORBELL_OUT_CLR
// Clear doorbells which have been posted to the opposite core
// 0x000000ff [7:0] DOORBELL_OUT_CLR (0x00)
io_rw_32 doorbell_out_clr;
_REG_(SIO_DOORBELL_IN_SET_OFFSET) // SIO_DOORBELL_IN_SET
// Write 1s to trigger doorbell interrupts on this core
// 0x000000ff [7:0] DOORBELL_IN_SET (0x00)
io_rw_32 doorbell_in_set;
_REG_(SIO_DOORBELL_IN_CLR_OFFSET) // SIO_DOORBELL_IN_CLR
// Check and acknowledge doorbells posted to this core
// 0x000000ff [7:0] DOORBELL_IN_CLR (0x00)
io_rw_32 doorbell_in_clr;
_REG_(SIO_PERI_NONSEC_OFFSET) // SIO_PERI_NONSEC
// Detach certain core-local peripherals from Secure SIO, and attach them to Non-secure SIO, so...
// 0x00000020 [5] TMDS (0) IF 1, detach TMDS encoder (of this core) from the Secure...
// 0x00000002 [1] INTERP1 (0) If 1, detach interpolator 1 (of this core) from the...
// 0x00000001 [0] INTERP0 (0) If 1, detach interpolator 0 (of this core) from the...
io_rw_32 peri_nonsec;
uint32_t _pad2[3];
_REG_(SIO_RISCV_SOFTIRQ_OFFSET) // SIO_RISCV_SOFTIRQ
// Control the assertion of the standard software interrupt (MIP
// 0x00000200 [9] CORE1_CLR (0) Write 1 to atomically clear the core 1 software interrupt flag
// 0x00000100 [8] CORE0_CLR (0) Write 1 to atomically clear the core 0 software interrupt flag
// 0x00000002 [1] CORE1_SET (0) Write 1 to atomically set the core 1 software interrupt flag
// 0x00000001 [0] CORE0_SET (0) Write 1 to atomically set the core 0 software interrupt flag
io_rw_32 riscv_softirq;
_REG_(SIO_MTIME_CTRL_OFFSET) // SIO_MTIME_CTRL
// Control register for the RISC-V 64-bit Machine-mode timer
// 0x00000008 [3] DBGPAUSE_CORE1 (1) If 1, the timer pauses when core 1 is in the debug halt state
// 0x00000004 [2] DBGPAUSE_CORE0 (1) If 1, the timer pauses when core 0 is in the debug halt state
// 0x00000002 [1] FULLSPEED (0) If 1, increment the timer every cycle (i
// 0x00000001 [0] EN (1) Timer enable bit
io_rw_32 mtime_ctrl;
uint32_t _pad3[2];
_REG_(SIO_MTIME_OFFSET) // SIO_MTIME
// Read/write access to the high half of RISC-V Machine-mode timer
// 0xffffffff [31:0] MTIME (0x00000000)
io_rw_32 mtime;
_REG_(SIO_MTIMEH_OFFSET) // SIO_MTIMEH
// Read/write access to the high half of RISC-V Machine-mode timer
// 0xffffffff [31:0] MTIMEH (0x00000000)
io_rw_32 mtimeh;
_REG_(SIO_MTIMECMP_OFFSET) // SIO_MTIMECMP
// Low half of RISC-V Machine-mode timer comparator
// 0xffffffff [31:0] MTIMECMP (0xffffffff)
io_rw_32 mtimecmp;
_REG_(SIO_MTIMECMPH_OFFSET) // SIO_MTIMECMPH
// High half of RISC-V Machine-mode timer comparator
// 0xffffffff [31:0] MTIMECMPH (0xffffffff)
io_rw_32 mtimecmph;
_REG_(SIO_TMDS_CTRL_OFFSET) // SIO_TMDS_CTRL
// Control register for TMDS encoder
// 0x10000000 [28] CLEAR_BALANCE (0) Clear the running DC balance state of the TMDS encoders
// 0x08000000 [27] PIX2_NOSHIFT (0) When encoding two pixels's worth of symbols in one cycle...
// 0x07000000 [26:24] PIX_SHIFT (0x0) Shift applied to the colour data register with each read...
// 0x00800000 [23] INTERLEAVE (0) Enable lane interleaving for reads of PEEK_SINGLE/POP_SINGLE
// 0x001c0000 [20:18] L2_NBITS (0x0) Number of valid colour MSBs for lane 2 (1-8 bits,...
// 0x00038000 [17:15] L1_NBITS (0x0) Number of valid colour MSBs for lane 1 (1-8 bits,...
// 0x00007000 [14:12] L0_NBITS (0x0) Number of valid colour MSBs for lane 0 (1-8 bits,...
// 0x00000f00 [11:8] L2_ROT (0x0) Right-rotate the 16 LSBs of the colour accumulator by...
// 0x000000f0 [7:4] L1_ROT (0x0) Right-rotate the 16 LSBs of the colour accumulator by...
// 0x0000000f [3:0] L0_ROT (0x0) Right-rotate the 16 LSBs of the colour accumulator by...
io_rw_32 tmds_ctrl;
_REG_(SIO_TMDS_WDATA_OFFSET) // SIO_TMDS_WDATA
// Write-only access to the TMDS colour data register
// 0xffffffff [31:0] TMDS_WDATA (0x00000000)
io_wo_32 tmds_wdata;
_REG_(SIO_TMDS_PEEK_SINGLE_OFFSET) // SIO_TMDS_PEEK_SINGLE
// Get the encoding of one pixel's worth of colour data, packed into a 32-bit value (3x10-bit symbols)
// 0xffffffff [31:0] TMDS_PEEK_SINGLE (0x00000000)
io_ro_32 tmds_peek_single;
_REG_(SIO_TMDS_POP_SINGLE_OFFSET) // SIO_TMDS_POP_SINGLE
// Get the encoding of one pixel's worth of colour data, packed into a 32-bit value
// 0xffffffff [31:0] TMDS_POP_SINGLE (0x00000000)
io_ro_32 tmds_pop_single;
_REG_(SIO_TMDS_PEEK_DOUBLE_L0_OFFSET) // SIO_TMDS_PEEK_DOUBLE_L0
// Get lane 0 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_PEEK_DOUBLE_L0 (0x00000000)
io_ro_32 tmds_peek_double_l0;
_REG_(SIO_TMDS_POP_DOUBLE_L0_OFFSET) // SIO_TMDS_POP_DOUBLE_L0
// Get lane 0 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_POP_DOUBLE_L0 (0x00000000)
io_ro_32 tmds_pop_double_l0;
_REG_(SIO_TMDS_PEEK_DOUBLE_L1_OFFSET) // SIO_TMDS_PEEK_DOUBLE_L1
// Get lane 1 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_PEEK_DOUBLE_L1 (0x00000000)
io_ro_32 tmds_peek_double_l1;
_REG_(SIO_TMDS_POP_DOUBLE_L1_OFFSET) // SIO_TMDS_POP_DOUBLE_L1
// Get lane 1 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_POP_DOUBLE_L1 (0x00000000)
io_ro_32 tmds_pop_double_l1;
_REG_(SIO_TMDS_PEEK_DOUBLE_L2_OFFSET) // SIO_TMDS_PEEK_DOUBLE_L2
// Get lane 2 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_PEEK_DOUBLE_L2 (0x00000000)
io_ro_32 tmds_peek_double_l2;
_REG_(SIO_TMDS_POP_DOUBLE_L2_OFFSET) // SIO_TMDS_POP_DOUBLE_L2
// Get lane 2 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_POP_DOUBLE_L2 (0x00000000)
io_ro_32 tmds_pop_double_l2;
} sio_hw_t;
#define sio_hw ((sio_hw_t *)SIO_BASE)
#define sio_ns_hw ((sio_hw_t *)SIO_NONSEC_BASE)
static_assert(sizeof (sio_hw_t) == 0x01e8, "");
#endif // _HARDWARE_STRUCTS_SIO_H

View File

@@ -0,0 +1,105 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_SPI_H
#define _HARDWARE_STRUCTS_SPI_H
/**
* \file rp2350/spi.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/spi.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_spi
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/spi.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(SPI_SSPCR0_OFFSET) // SPI_SSPCR0
// Control register 0, SSPCR0 on page 3-4
// 0x0000ff00 [15:8] SCR (0x00) Serial clock rate
// 0x00000080 [7] SPH (0) SSPCLKOUT phase, applicable to Motorola SPI frame format only
// 0x00000040 [6] SPO (0) SSPCLKOUT polarity, applicable to Motorola SPI frame format only
// 0x00000030 [5:4] FRF (0x0) Frame format: 00 Motorola SPI frame format
// 0x0000000f [3:0] DSS (0x0) Data Size Select: 0000 Reserved, undefined operation
io_rw_32 cr0;
_REG_(SPI_SSPCR1_OFFSET) // SPI_SSPCR1
// Control register 1, SSPCR1 on page 3-5
// 0x00000008 [3] SOD (0) Slave-mode output disable
// 0x00000004 [2] MS (0) Master or slave mode select
// 0x00000002 [1] SSE (0) Synchronous serial port enable: 0 SSP operation disabled
// 0x00000001 [0] LBM (0) Loop back mode: 0 Normal serial port operation enabled
io_rw_32 cr1;
_REG_(SPI_SSPDR_OFFSET) // SPI_SSPDR
// Data register, SSPDR on page 3-6
// 0x0000ffff [15:0] DATA (-) Transmit/Receive FIFO: Read Receive FIFO
io_rw_32 dr;
_REG_(SPI_SSPSR_OFFSET) // SPI_SSPSR
// Status register, SSPSR on page 3-7
// 0x00000010 [4] BSY (0) PrimeCell SSP busy flag, RO: 0 SSP is idle
// 0x00000008 [3] RFF (0) Receive FIFO full, RO: 0 Receive FIFO is not full
// 0x00000004 [2] RNE (0) Receive FIFO not empty, RO: 0 Receive FIFO is empty
// 0x00000002 [1] TNF (1) Transmit FIFO not full, RO: 0 Transmit FIFO is full
// 0x00000001 [0] TFE (1) Transmit FIFO empty, RO: 0 Transmit FIFO is not empty
io_ro_32 sr;
_REG_(SPI_SSPCPSR_OFFSET) // SPI_SSPCPSR
// Clock prescale register, SSPCPSR on page 3-8
// 0x000000ff [7:0] CPSDVSR (0x00) Clock prescale divisor
io_rw_32 cpsr;
_REG_(SPI_SSPIMSC_OFFSET) // SPI_SSPIMSC
// Interrupt mask set or clear register, SSPIMSC on page 3-9
// 0x00000008 [3] TXIM (0) Transmit FIFO interrupt mask: 0 Transmit FIFO half empty...
// 0x00000004 [2] RXIM (0) Receive FIFO interrupt mask: 0 Receive FIFO half full or...
// 0x00000002 [1] RTIM (0) Receive timeout interrupt mask: 0 Receive FIFO not empty...
// 0x00000001 [0] RORIM (0) Receive overrun interrupt mask: 0 Receive FIFO written...
io_rw_32 imsc;
_REG_(SPI_SSPRIS_OFFSET) // SPI_SSPRIS
// Raw interrupt status register, SSPRIS on page 3-10
// 0x00000008 [3] TXRIS (1) Gives the raw interrupt state, prior to masking, of the...
// 0x00000004 [2] RXRIS (0) Gives the raw interrupt state, prior to masking, of the...
// 0x00000002 [1] RTRIS (0) Gives the raw interrupt state, prior to masking, of the...
// 0x00000001 [0] RORRIS (0) Gives the raw interrupt state, prior to masking, of the...
io_ro_32 ris;
_REG_(SPI_SSPMIS_OFFSET) // SPI_SSPMIS
// Masked interrupt status register, SSPMIS on page 3-11
// 0x00000008 [3] TXMIS (0) Gives the transmit FIFO masked interrupt state, after...
// 0x00000004 [2] RXMIS (0) Gives the receive FIFO masked interrupt state, after...
// 0x00000002 [1] RTMIS (0) Gives the receive timeout masked interrupt state, after...
// 0x00000001 [0] RORMIS (0) Gives the receive over run masked interrupt status,...
io_ro_32 mis;
_REG_(SPI_SSPICR_OFFSET) // SPI_SSPICR
// Interrupt clear register, SSPICR on page 3-11
// 0x00000002 [1] RTIC (0) Clears the SSPRTINTR interrupt
// 0x00000001 [0] RORIC (0) Clears the SSPRORINTR interrupt
io_rw_32 icr;
_REG_(SPI_SSPDMACR_OFFSET) // SPI_SSPDMACR
// DMA control register, SSPDMACR on page 3-12
// 0x00000002 [1] TXDMAE (0) Transmit DMA Enable
// 0x00000001 [0] RXDMAE (0) Receive DMA Enable
io_rw_32 dmacr;
} spi_hw_t;
#define spi0_hw ((spi_hw_t *)SPI0_BASE)
#define spi1_hw ((spi_hw_t *)SPI1_BASE)
static_assert(sizeof (spi_hw_t) == 0x0028, "");
#endif // _HARDWARE_STRUCTS_SPI_H

View File

@@ -0,0 +1,83 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_SYSCFG_H
#define _HARDWARE_STRUCTS_SYSCFG_H
/**
* \file rp2350/syscfg.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/syscfg.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_syscfg
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/syscfg.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(SYSCFG_PROC_CONFIG_OFFSET) // SYSCFG_PROC_CONFIG
// Configuration for processors
// 0x00000002 [1] PROC1_HALTED (0) Indication that proc1 has halted
// 0x00000001 [0] PROC0_HALTED (0) Indication that proc0 has halted
io_ro_32 proc_config;
_REG_(SYSCFG_PROC_IN_SYNC_BYPASS_OFFSET) // SYSCFG_PROC_IN_SYNC_BYPASS
// For each bit, if 1, bypass the input synchronizer between that GPIO +
// 0xffffffff [31:0] GPIO (0x00000000)
io_rw_32 proc_in_sync_bypass;
_REG_(SYSCFG_PROC_IN_SYNC_BYPASS_HI_OFFSET) // SYSCFG_PROC_IN_SYNC_BYPASS_HI
// For each bit, if 1, bypass the input synchronizer between that GPIO +
// 0xf0000000 [31:28] QSPI_SD (0x0)
// 0x08000000 [27] QSPI_CSN (0)
// 0x04000000 [26] QSPI_SCK (0)
// 0x02000000 [25] USB_DM (0)
// 0x01000000 [24] USB_DP (0)
// 0x0000ffff [15:0] GPIO (0x0000)
io_rw_32 proc_in_sync_bypass_hi;
_REG_(SYSCFG_DBGFORCE_OFFSET) // SYSCFG_DBGFORCE
// Directly control the chip SWD debug port
// 0x00000008 [3] ATTACH (0) Attach chip debug port to syscfg controls, and...
// 0x00000004 [2] SWCLK (1) Directly drive SWCLK, if ATTACH is set
// 0x00000002 [1] SWDI (1) Directly drive SWDIO input, if ATTACH is set
// 0x00000001 [0] SWDO (-) Observe the value of SWDIO output
io_rw_32 dbgforce;
_REG_(SYSCFG_MEMPOWERDOWN_OFFSET) // SYSCFG_MEMPOWERDOWN
// Control PD pins to memories
// 0x00001000 [12] BOOTRAM (0)
// 0x00000800 [11] ROM (0)
// 0x00000400 [10] USB (0)
// 0x00000200 [9] SRAM9 (0)
// 0x00000100 [8] SRAM8 (0)
// 0x00000080 [7] SRAM7 (0)
// 0x00000040 [6] SRAM6 (0)
// 0x00000020 [5] SRAM5 (0)
// 0x00000010 [4] SRAM4 (0)
// 0x00000008 [3] SRAM3 (0)
// 0x00000004 [2] SRAM2 (0)
// 0x00000002 [1] SRAM1 (0)
// 0x00000001 [0] SRAM0 (0)
io_rw_32 mempowerdown;
_REG_(SYSCFG_AUXCTRL_OFFSET) // SYSCFG_AUXCTRL
// Auxiliary system control register
// 0x000000ff [7:0] AUXCTRL (0x00) * Bits 7:2: Reserved
io_rw_32 auxctrl;
} syscfg_hw_t;
#define syscfg_hw ((syscfg_hw_t *)SYSCFG_BASE)
static_assert(sizeof (syscfg_hw_t) == 0x0018, "");
#endif // _HARDWARE_STRUCTS_SYSCFG_H

View File

@@ -0,0 +1,60 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_SYSINFO_H
#define _HARDWARE_STRUCTS_SYSINFO_H
/**
* \file rp2350/sysinfo.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/sysinfo.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_sysinfo
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/sysinfo.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(SYSINFO_CHIP_ID_OFFSET) // SYSINFO_CHIP_ID
// JEDEC JEP-106 compliant chip identifier
// 0xf0000000 [31:28] REVISION (-)
// 0x0ffff000 [27:12] PART (-)
// 0x00000ffe [11:1] MANUFACTURER (-)
// 0x00000001 [0] STOP_BIT (1)
io_ro_32 chip_id;
_REG_(SYSINFO_PACKAGE_SEL_OFFSET) // SYSINFO_PACKAGE_SEL
// 0x00000001 [0] PACKAGE_SEL (0)
io_ro_32 package_sel;
_REG_(SYSINFO_PLATFORM_OFFSET) // SYSINFO_PLATFORM
// Platform register
// 0x00000010 [4] GATESIM (-)
// 0x00000008 [3] BATCHSIM (-)
// 0x00000004 [2] HDLSIM (-)
// 0x00000002 [1] ASIC (-)
// 0x00000001 [0] FPGA (-)
io_ro_32 platform;
uint32_t _pad0[2];
_REG_(SYSINFO_GITREF_RP2350_OFFSET) // SYSINFO_GITREF_RP2350
// Git hash of the chip source
// 0xffffffff [31:0] GITREF_RP2350 (-)
io_ro_32 gitref_rp2350;
} sysinfo_hw_t;
#define sysinfo_hw ((sysinfo_hw_t *)SYSINFO_BASE)
static_assert(sizeof (sysinfo_hw_t) == 0x0018, "");
#endif // _HARDWARE_STRUCTS_SYSINFO_H

View File

@@ -0,0 +1,62 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_SYSTICK_H
#define _HARDWARE_STRUCTS_SYSTICK_H
/**
* \file rp2350/systick.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/m33.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_m33
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/m33.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
#if defined(__riscv) && PICO_FORBID_ARM_HEADERS_ON_RISCV
#error "Arm header included in a RISC-V build with PICO_FORBID_ARM_HEADERS_ON_RISCV=1"
#endif
typedef struct {
_REG_(M33_SYST_CSR_OFFSET) // M33_SYST_CSR
// SysTick Control and Status Register
// 0x00010000 [16] COUNTFLAG (0) Returns 1 if timer counted to 0 since last time this was read
// 0x00000004 [2] CLKSOURCE (0) SysTick clock source
// 0x00000002 [1] TICKINT (0) Enables SysTick exception request: +
// 0x00000001 [0] ENABLE (0) Enable SysTick counter: +
io_rw_32 csr;
_REG_(M33_SYST_RVR_OFFSET) // M33_SYST_RVR
// SysTick Reload Value Register
// 0x00ffffff [23:0] RELOAD (0x000000) Value to load into the SysTick Current Value Register...
io_rw_32 rvr;
_REG_(M33_SYST_CVR_OFFSET) // M33_SYST_CVR
// SysTick Current Value Register
// 0x00ffffff [23:0] CURRENT (0x000000) Reads return the current value of the SysTick counter
io_rw_32 cvr;
_REG_(M33_SYST_CALIB_OFFSET) // M33_SYST_CALIB
// SysTick Calibration Value Register
// 0x80000000 [31] NOREF (0) If reads as 1, the Reference clock is not provided - the...
// 0x40000000 [30] SKEW (0) If reads as 1, the calibration value for 10ms is inexact...
// 0x00ffffff [23:0] TENMS (0x000000) An optional Reload value to be used for 10ms (100Hz)...
io_ro_32 calib;
} systick_hw_t;
#define systick_hw ((systick_hw_t *)(PPB_BASE + M33_SYST_CSR_OFFSET))
#define systick_ns_hw ((systick_hw_t *)(PPB_NONSEC_BASE + M33_SYST_CSR_OFFSET))
static_assert(sizeof (systick_hw_t) == 0x0010, "");
#endif // _HARDWARE_STRUCTS_SYSTICK_H

View File

@@ -0,0 +1,39 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_TBMAN_H
#define _HARDWARE_STRUCTS_TBMAN_H
/**
* \file rp2350/tbman.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/tbman.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_tbman
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/tbman.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(TBMAN_PLATFORM_OFFSET) // TBMAN_PLATFORM
// Indicates the type of platform in use
// 0x00000004 [2] HDLSIM (0) Indicates the platform is a simulation
// 0x00000002 [1] FPGA (0) Indicates the platform is an FPGA
// 0x00000001 [0] ASIC (1) Indicates the platform is an ASIC
io_ro_32 platform;
} tbman_hw_t;
#define tbman_hw ((tbman_hw_t *)TBMAN_BASE)
static_assert(sizeof (tbman_hw_t) == 0x0004, "");
#endif // _HARDWARE_STRUCTS_TBMAN_H

View File

@@ -0,0 +1,63 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_TICKS_H
#define _HARDWARE_STRUCTS_TICKS_H
/**
* \file rp2350/ticks.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/ticks.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_ticks
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/ticks.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
/*! \brief Tick generator numbers on RP2350 (used as typedef \ref tick_gen_num_t)
* \ingroup hardware_ticks
*/
typedef enum tick_gen_num_rp2350 {
TICK_PROC0 = 0,
TICK_PROC1 = 1,
TICK_TIMER0 = 2,
TICK_TIMER1 = 3,
TICK_WATCHDOG = 4,
TICK_RISCV = 5,
TICK_COUNT
} tick_gen_num_t;
typedef struct {
_REG_(TICKS_PROC0_CTRL_OFFSET) // TICKS_PROC0_CTRL
// Controls the tick generator
// 0x00000002 [1] RUNNING (-) Is the tick generator running?
// 0x00000001 [0] ENABLE (0) start / stop tick generation
io_rw_32 ctrl;
_REG_(TICKS_PROC0_CYCLES_OFFSET) // TICKS_PROC0_CYCLES
// 0x000001ff [8:0] PROC0_CYCLES (0x000) Total number of clk_tick cycles before the next tick
io_rw_32 cycles;
_REG_(TICKS_PROC0_COUNT_OFFSET) // TICKS_PROC0_COUNT
// 0x000001ff [8:0] PROC0_COUNT (-) Count down timer: the remaining number clk_tick cycles...
io_ro_32 count;
} ticks_slice_hw_t;
typedef struct {
ticks_slice_hw_t ticks[6];
} ticks_hw_t;
#define ticks_hw ((ticks_hw_t *)TICKS_BASE)
static_assert(sizeof (ticks_hw_t) == 0x0048, "");
#endif // _HARDWARE_STRUCTS_TICKS_H

View File

@@ -0,0 +1,127 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_TIMER_H
#define _HARDWARE_STRUCTS_TIMER_H
/**
* \file rp2350/timer.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/timer.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_timer
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/timer.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(TIMER_TIMEHW_OFFSET) // TIMER_TIMEHW
// Write to bits 63:32 of time always write timelw before timehw
// 0xffffffff [31:0] TIMEHW (0x00000000)
io_wo_32 timehw;
_REG_(TIMER_TIMELW_OFFSET) // TIMER_TIMELW
// Write to bits 31:0 of time writes do not get copied to time until timehw is written
// 0xffffffff [31:0] TIMELW (0x00000000)
io_wo_32 timelw;
_REG_(TIMER_TIMEHR_OFFSET) // TIMER_TIMEHR
// Read from bits 63:32 of time always read timelr before timehr
// 0xffffffff [31:0] TIMEHR (0x00000000)
io_ro_32 timehr;
_REG_(TIMER_TIMELR_OFFSET) // TIMER_TIMELR
// Read from bits 31:0 of time
// 0xffffffff [31:0] TIMELR (0x00000000)
io_ro_32 timelr;
// (Description copied from array index 0 register TIMER_ALARM0 applies similarly to other array indexes)
_REG_(TIMER_ALARM0_OFFSET) // TIMER_ALARM0
// Arm alarm 0, and configure the time it will fire
// 0xffffffff [31:0] ALARM0 (0x00000000)
io_rw_32 alarm[4];
_REG_(TIMER_ARMED_OFFSET) // TIMER_ARMED
// Indicates the armed/disarmed status of each alarm
// 0x0000000f [3:0] ARMED (0x0)
io_rw_32 armed;
_REG_(TIMER_TIMERAWH_OFFSET) // TIMER_TIMERAWH
// Raw read from bits 63:32 of time (no side effects)
// 0xffffffff [31:0] TIMERAWH (0x00000000)
io_ro_32 timerawh;
_REG_(TIMER_TIMERAWL_OFFSET) // TIMER_TIMERAWL
// Raw read from bits 31:0 of time (no side effects)
// 0xffffffff [31:0] TIMERAWL (0x00000000)
io_ro_32 timerawl;
_REG_(TIMER_DBGPAUSE_OFFSET) // TIMER_DBGPAUSE
// Set bits high to enable pause when the corresponding debug ports are active
// 0x00000004 [2] DBG1 (1) Pause when processor 1 is in debug mode
// 0x00000002 [1] DBG0 (1) Pause when processor 0 is in debug mode
io_rw_32 dbgpause;
_REG_(TIMER_PAUSE_OFFSET) // TIMER_PAUSE
// Set high to pause the timer
// 0x00000001 [0] PAUSE (0)
io_rw_32 pause;
_REG_(TIMER_LOCKED_OFFSET) // TIMER_LOCKED
// Set locked bit to disable write access to timer Once set, cannot be cleared (without a reset)
// 0x00000001 [0] LOCKED (0)
io_rw_32 locked;
_REG_(TIMER_SOURCE_OFFSET) // TIMER_SOURCE
// Selects the source for the timer
// 0x00000001 [0] CLK_SYS (0)
io_rw_32 source;
_REG_(TIMER_INTR_OFFSET) // TIMER_INTR
// Raw Interrupts
// 0x00000008 [3] ALARM_3 (0)
// 0x00000004 [2] ALARM_2 (0)
// 0x00000002 [1] ALARM_1 (0)
// 0x00000001 [0] ALARM_0 (0)
io_rw_32 intr;
_REG_(TIMER_INTE_OFFSET) // TIMER_INTE
// Interrupt Enable
// 0x00000008 [3] ALARM_3 (0)
// 0x00000004 [2] ALARM_2 (0)
// 0x00000002 [1] ALARM_1 (0)
// 0x00000001 [0] ALARM_0 (0)
io_rw_32 inte;
_REG_(TIMER_INTF_OFFSET) // TIMER_INTF
// Interrupt Force
// 0x00000008 [3] ALARM_3 (0)
// 0x00000004 [2] ALARM_2 (0)
// 0x00000002 [1] ALARM_1 (0)
// 0x00000001 [0] ALARM_0 (0)
io_rw_32 intf;
_REG_(TIMER_INTS_OFFSET) // TIMER_INTS
// Interrupt status after masking & forcing
// 0x00000008 [3] ALARM_3 (0)
// 0x00000004 [2] ALARM_2 (0)
// 0x00000002 [1] ALARM_1 (0)
// 0x00000001 [0] ALARM_0 (0)
io_ro_32 ints;
} timer_hw_t;
#define timer0_hw ((timer_hw_t *)TIMER0_BASE)
#define timer1_hw ((timer_hw_t *)TIMER1_BASE)
static_assert(sizeof (timer_hw_t) == 0x004c, "");
#endif // _HARDWARE_STRUCTS_TIMER_H

View File

@@ -0,0 +1,92 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_TMDS_ENCODE_H
#define _HARDWARE_STRUCTS_TMDS_ENCODE_H
/**
* \file rp2350/tmds_encode.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/sio.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_sio
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/sio.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(SIO_TMDS_CTRL_OFFSET) // SIO_TMDS_CTRL
// Control register for TMDS encoder
// 0x10000000 [28] CLEAR_BALANCE (0) Clear the running DC balance state of the TMDS encoders
// 0x08000000 [27] PIX2_NOSHIFT (0) When encoding two pixels's worth of symbols in one cycle...
// 0x07000000 [26:24] PIX_SHIFT (0x0) Shift applied to the colour data register with each read...
// 0x00800000 [23] INTERLEAVE (0) Enable lane interleaving for reads of PEEK_SINGLE/POP_SINGLE
// 0x001c0000 [20:18] L2_NBITS (0x0) Number of valid colour MSBs for lane 2 (1-8 bits,...
// 0x00038000 [17:15] L1_NBITS (0x0) Number of valid colour MSBs for lane 1 (1-8 bits,...
// 0x00007000 [14:12] L0_NBITS (0x0) Number of valid colour MSBs for lane 0 (1-8 bits,...
// 0x00000f00 [11:8] L2_ROT (0x0) Right-rotate the 16 LSBs of the colour accumulator by...
// 0x000000f0 [7:4] L1_ROT (0x0) Right-rotate the 16 LSBs of the colour accumulator by...
// 0x0000000f [3:0] L0_ROT (0x0) Right-rotate the 16 LSBs of the colour accumulator by...
io_rw_32 tmds_ctrl;
_REG_(SIO_TMDS_WDATA_OFFSET) // SIO_TMDS_WDATA
// Write-only access to the TMDS colour data register
// 0xffffffff [31:0] TMDS_WDATA (0x00000000)
io_wo_32 tmds_wdata;
_REG_(SIO_TMDS_PEEK_SINGLE_OFFSET) // SIO_TMDS_PEEK_SINGLE
// Get the encoding of one pixel's worth of colour data, packed into a 32-bit value (3x10-bit symbols)
// 0xffffffff [31:0] TMDS_PEEK_SINGLE (0x00000000)
io_ro_32 tmds_peek_single;
_REG_(SIO_TMDS_POP_SINGLE_OFFSET) // SIO_TMDS_POP_SINGLE
// Get the encoding of one pixel's worth of colour data, packed into a 32-bit value
// 0xffffffff [31:0] TMDS_POP_SINGLE (0x00000000)
io_ro_32 tmds_pop_single;
_REG_(SIO_TMDS_PEEK_DOUBLE_L0_OFFSET) // SIO_TMDS_PEEK_DOUBLE_L0
// Get lane 0 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_PEEK_DOUBLE_L0 (0x00000000)
io_ro_32 tmds_peek_double_l0;
_REG_(SIO_TMDS_POP_DOUBLE_L0_OFFSET) // SIO_TMDS_POP_DOUBLE_L0
// Get lane 0 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_POP_DOUBLE_L0 (0x00000000)
io_ro_32 tmds_pop_double_l0;
_REG_(SIO_TMDS_PEEK_DOUBLE_L1_OFFSET) // SIO_TMDS_PEEK_DOUBLE_L1
// Get lane 1 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_PEEK_DOUBLE_L1 (0x00000000)
io_ro_32 tmds_peek_double_l1;
_REG_(SIO_TMDS_POP_DOUBLE_L1_OFFSET) // SIO_TMDS_POP_DOUBLE_L1
// Get lane 1 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_POP_DOUBLE_L1 (0x00000000)
io_ro_32 tmds_pop_double_l1;
_REG_(SIO_TMDS_PEEK_DOUBLE_L2_OFFSET) // SIO_TMDS_PEEK_DOUBLE_L2
// Get lane 2 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_PEEK_DOUBLE_L2 (0x00000000)
io_ro_32 tmds_peek_double_l2;
_REG_(SIO_TMDS_POP_DOUBLE_L2_OFFSET) // SIO_TMDS_POP_DOUBLE_L2
// Get lane 2 of the encoding of two pixels' worth of colour data
// 0xffffffff [31:0] TMDS_POP_DOUBLE_L2 (0x00000000)
io_ro_32 tmds_pop_double_l2;
} tmds_encode_hw_t;
#define tmds_encode_hw ((tmds_encode_hw_t *)(SIO_BASE + SIO_TMDS_CTRL_OFFSET))
#define tmds_encode_ns_hw ((tmds_encode_hw_t *)(SIO_NONSEC_BASE + SIO_TMDS_CTRL_OFFSET))
static_assert(sizeof (tmds_encode_hw_t) == 0x0028, "");
#endif // _HARDWARE_STRUCTS_TMDS_ENCODE_H

View File

@@ -0,0 +1,153 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_TRNG_H
#define _HARDWARE_STRUCTS_TRNG_H
/**
* \file rp2350/trng.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/trng.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_trng
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/trng.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(TRNG_RNG_IMR_OFFSET) // TRNG_RNG_IMR
// Interrupt masking
// 0xfffffff0 [31:4] RESERVED (0x0000000) RESERVED
// 0x00000008 [3] VN_ERR_INT_MASK (1) 1'b1-mask interrupt, no interrupt will be generated
// 0x00000004 [2] CRNGT_ERR_INT_MASK (1) 1'b1-mask interrupt, no interrupt will be generated
// 0x00000002 [1] AUTOCORR_ERR_INT_MASK (1) 1'b1-mask interrupt, no interrupt will be generated
// 0x00000001 [0] EHR_VALID_INT_MASK (1) 1'b1-mask interrupt, no interrupt will be generated
io_rw_32 rng_imr;
_REG_(TRNG_RNG_ISR_OFFSET) // TRNG_RNG_ISR
// RNG status register
// 0xfffffff0 [31:4] RESERVED (0x0000000) RESERVED
// 0x00000008 [3] VN_ERR (0) 1'b1 indicates Von Neuman error
// 0x00000004 [2] CRNGT_ERR (0) 1'b1 indicates CRNGT in the RNG test failed
// 0x00000002 [1] AUTOCORR_ERR (0) 1'b1 indicates Autocorrelation test failed four times in a row
// 0x00000001 [0] EHR_VALID (0) 1'b1 indicates that 192 bits have been collected in the...
io_ro_32 rng_isr;
_REG_(TRNG_RNG_ICR_OFFSET) // TRNG_RNG_ICR
// Interrupt/status bit clear Register
// 0xfffffff0 [31:4] RESERVED (0x0000000) RESERVED
// 0x00000008 [3] VN_ERR (0) Write 1'b1 - clear corresponding bit in RNG_ISR
// 0x00000004 [2] CRNGT_ERR (0) Write 1'b1 - clear corresponding bit in RNG_ISR
// 0x00000002 [1] AUTOCORR_ERR (0) Cannot be cleared by SW! Only RNG reset clears this bit
// 0x00000001 [0] EHR_VALID (0) Write 1'b1 - clear corresponding bit in RNG_ISR
io_rw_32 rng_icr;
_REG_(TRNG_TRNG_CONFIG_OFFSET) // TRNG_TRNG_CONFIG
// Selecting the inverter-chain length
// 0xfffffffc [31:2] RESERVED (0x00000000) RESERVED
// 0x00000003 [1:0] RND_SRC_SEL (0x0) Selects the number of inverters (out of four possible...
io_rw_32 trng_config;
_REG_(TRNG_TRNG_VALID_OFFSET) // TRNG_TRNG_VALID
// 192 bit collection indication
// 0xfffffffe [31:1] RESERVED (0x00000000) RESERVED
// 0x00000001 [0] EHR_VALID (0) 1'b1 indicates that collection of bits in the RNG is...
io_ro_32 trng_valid;
// (Description copied from array index 0 register TRNG_EHR_DATA0 applies similarly to other array indexes)
_REG_(TRNG_EHR_DATA0_OFFSET) // TRNG_EHR_DATA0
// RNG collected bits
// 0xffffffff [31:0] EHR_DATA0 (0x00000000) Bits [31:0] of Entropy Holding Register (EHR) - RNG...
io_ro_32 ehr_data[6];
_REG_(TRNG_RND_SOURCE_ENABLE_OFFSET) // TRNG_RND_SOURCE_ENABLE
// Enable signal for the random source
// 0xfffffffe [31:1] RESERVED (0x00000000) RESERVED
// 0x00000001 [0] RND_SRC_EN (0) * 1'b1 - entropy source is enabled
io_rw_32 rnd_source_enable;
_REG_(TRNG_SAMPLE_CNT1_OFFSET) // TRNG_SAMPLE_CNT1
// Counts clocks between sampling of random bit
// 0xffffffff [31:0] SAMPLE_CNTR1 (0x0000ffff) Sets the number of rng_clk cycles between two...
io_rw_32 sample_cnt1;
_REG_(TRNG_AUTOCORR_STATISTIC_OFFSET) // TRNG_AUTOCORR_STATISTIC
// Statistic about Autocorrelation test activations
// 0xffc00000 [31:22] RESERVED (0x000) RESERVED
// 0x003fc000 [21:14] AUTOCORR_FAILS (0x00) Count each time an autocorrelation test fails
// 0x00003fff [13:0] AUTOCORR_TRYS (0x0000) Count each time an autocorrelation test starts
io_rw_32 autocorr_statistic;
_REG_(TRNG_TRNG_DEBUG_CONTROL_OFFSET) // TRNG_TRNG_DEBUG_CONTROL
// Debug register
// 0x00000008 [3] AUTO_CORRELATE_BYPASS (0) When set, the autocorrelation test in the TRNG module is bypassed
// 0x00000004 [2] TRNG_CRNGT_BYPASS (0) When set, the CRNGT test in the RNG is bypassed
// 0x00000002 [1] VNC_BYPASS (0) When set, the Von-Neuman balancer is bypassed (including...
// 0x00000001 [0] RESERVED (0) N/A
io_rw_32 trng_debug_control;
uint32_t _pad0;
_REG_(TRNG_TRNG_SW_RESET_OFFSET) // TRNG_TRNG_SW_RESET
// Generate internal SW reset within the RNG block
// 0xfffffffe [31:1] RESERVED (0x00000000) RESERVED
// 0x00000001 [0] TRNG_SW_RESET (0) Writing 1'b1 to this register causes an internal RNG reset
io_rw_32 trng_sw_reset;
uint32_t _pad1[28];
_REG_(TRNG_RNG_DEBUG_EN_INPUT_OFFSET) // TRNG_RNG_DEBUG_EN_INPUT
// Enable the RNG debug mode
// 0xfffffffe [31:1] RESERVED (0x00000000) RESERVED
// 0x00000001 [0] RNG_DEBUG_EN (0) * 1'b1 - debug mode is enabled
io_rw_32 rng_debug_en_input;
_REG_(TRNG_TRNG_BUSY_OFFSET) // TRNG_TRNG_BUSY
// RNG Busy indication
// 0xfffffffe [31:1] RESERVED (0x00000000) RESERVED
// 0x00000001 [0] TRNG_BUSY (0) Reflects rng_busy status
io_ro_32 trng_busy;
_REG_(TRNG_RST_BITS_COUNTER_OFFSET) // TRNG_RST_BITS_COUNTER
// Reset the counter of collected bits in the RNG
// 0xfffffffe [31:1] RESERVED (0x00000000) RESERVED
// 0x00000001 [0] RST_BITS_COUNTER (0) Writing any value to this address will reset the bits...
io_rw_32 rst_bits_counter;
_REG_(TRNG_RNG_VERSION_OFFSET) // TRNG_RNG_VERSION
// Displays the version settings of the TRNG
// 0xffffff00 [31:8] RESERVED (0x000000) RESERVED
// 0x00000080 [7] RNG_USE_5_SBOXES (0) * 1'b1 - 5 SBOX AES
// 0x00000040 [6] RESEEDING_EXISTS (0) * 1'b1 - Exists
// 0x00000020 [5] KAT_EXISTS (0) * 1'b1 - Exists
// 0x00000010 [4] PRNG_EXISTS (0) * 1'b1 - Exists
// 0x00000008 [3] TRNG_TESTS_BYPASS_EN (0) * 1'b1 - Exists
// 0x00000004 [2] AUTOCORR_EXISTS (0) * 1'b1 - Exists
// 0x00000002 [1] CRNGT_EXISTS (0) * 1'b1 - Exists
// 0x00000001 [0] EHR_WIDTH_192 (0) * 1'b1 - 192-bit EHR
io_ro_32 rng_version;
uint32_t _pad2[7];
// (Description copied from array index 0 register TRNG_RNG_BIST_CNTR_0 applies similarly to other array indexes)
_REG_(TRNG_RNG_BIST_CNTR_0_OFFSET) // TRNG_RNG_BIST_CNTR_0
// Collected BIST results
// 0xffc00000 [31:22] RESERVED (0x000) RESERVED
// 0x003fffff [21:0] ROSC_CNTR_VAL (0x000000) Reflects the results of RNG BIST counter
io_ro_32 rng_bist_cntr[3];
} trng_hw_t;
#define trng_hw ((trng_hw_t *)(TRNG_BASE + TRNG_RNG_IMR_OFFSET))
static_assert(sizeof (trng_hw_t) == 0x00ec, "");
#endif // _HARDWARE_STRUCTS_TRNG_H

View File

@@ -0,0 +1,182 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_UART_H
#define _HARDWARE_STRUCTS_UART_H
/**
* \file rp2350/uart.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/uart.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_uart
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/uart.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(UART_UARTDR_OFFSET) // UART_UARTDR
// Data Register, UARTDR
// 0x00000800 [11] OE (-) Overrun error
// 0x00000400 [10] BE (-) Break error
// 0x00000200 [9] PE (-) Parity error
// 0x00000100 [8] FE (-) Framing error
// 0x000000ff [7:0] DATA (-) Receive (read) data character
io_rw_32 dr;
_REG_(UART_UARTRSR_OFFSET) // UART_UARTRSR
// Receive Status Register/Error Clear Register, UARTRSR/UARTECR
// 0x00000008 [3] OE (0) Overrun error
// 0x00000004 [2] BE (0) Break error
// 0x00000002 [1] PE (0) Parity error
// 0x00000001 [0] FE (0) Framing error
io_rw_32 rsr;
uint32_t _pad0[4];
_REG_(UART_UARTFR_OFFSET) // UART_UARTFR
// Flag Register, UARTFR
// 0x00000100 [8] RI (-) Ring indicator
// 0x00000080 [7] TXFE (1) Transmit FIFO empty
// 0x00000040 [6] RXFF (0) Receive FIFO full
// 0x00000020 [5] TXFF (0) Transmit FIFO full
// 0x00000010 [4] RXFE (1) Receive FIFO empty
// 0x00000008 [3] BUSY (0) UART busy
// 0x00000004 [2] DCD (-) Data carrier detect
// 0x00000002 [1] DSR (-) Data set ready
// 0x00000001 [0] CTS (-) Clear to send
io_ro_32 fr;
uint32_t _pad1;
_REG_(UART_UARTILPR_OFFSET) // UART_UARTILPR
// IrDA Low-Power Counter Register, UARTILPR
// 0x000000ff [7:0] ILPDVSR (0x00) 8-bit low-power divisor value
io_rw_32 ilpr;
_REG_(UART_UARTIBRD_OFFSET) // UART_UARTIBRD
// Integer Baud Rate Register, UARTIBRD
// 0x0000ffff [15:0] BAUD_DIVINT (0x0000) The integer baud rate divisor
io_rw_32 ibrd;
_REG_(UART_UARTFBRD_OFFSET) // UART_UARTFBRD
// Fractional Baud Rate Register, UARTFBRD
// 0x0000003f [5:0] BAUD_DIVFRAC (0x00) The fractional baud rate divisor
io_rw_32 fbrd;
_REG_(UART_UARTLCR_H_OFFSET) // UART_UARTLCR_H
// Line Control Register, UARTLCR_H
// 0x00000080 [7] SPS (0) Stick parity select
// 0x00000060 [6:5] WLEN (0x0) Word length
// 0x00000010 [4] FEN (0) Enable FIFOs: 0 = FIFOs are disabled (character mode)...
// 0x00000008 [3] STP2 (0) Two stop bits select
// 0x00000004 [2] EPS (0) Even parity select
// 0x00000002 [1] PEN (0) Parity enable: 0 = parity is disabled and no parity bit...
// 0x00000001 [0] BRK (0) Send break
io_rw_32 lcr_h;
_REG_(UART_UARTCR_OFFSET) // UART_UARTCR
// Control Register, UARTCR
// 0x00008000 [15] CTSEN (0) CTS hardware flow control enable
// 0x00004000 [14] RTSEN (0) RTS hardware flow control enable
// 0x00002000 [13] OUT2 (0) This bit is the complement of the UART Out2 (nUARTOut2)...
// 0x00001000 [12] OUT1 (0) This bit is the complement of the UART Out1 (nUARTOut1)...
// 0x00000800 [11] RTS (0) Request to send
// 0x00000400 [10] DTR (0) Data transmit ready
// 0x00000200 [9] RXE (1) Receive enable
// 0x00000100 [8] TXE (1) Transmit enable
// 0x00000080 [7] LBE (0) Loopback enable
// 0x00000004 [2] SIRLP (0) SIR low-power IrDA mode
// 0x00000002 [1] SIREN (0) SIR enable: 0 = IrDA SIR ENDEC is disabled
// 0x00000001 [0] UARTEN (0) UART enable: 0 = UART is disabled
io_rw_32 cr;
_REG_(UART_UARTIFLS_OFFSET) // UART_UARTIFLS
// Interrupt FIFO Level Select Register, UARTIFLS
// 0x00000038 [5:3] RXIFLSEL (0x2) Receive interrupt FIFO level select
// 0x00000007 [2:0] TXIFLSEL (0x2) Transmit interrupt FIFO level select
io_rw_32 ifls;
_REG_(UART_UARTIMSC_OFFSET) // UART_UARTIMSC
// Interrupt Mask Set/Clear Register, UARTIMSC
// 0x00000400 [10] OEIM (0) Overrun error interrupt mask
// 0x00000200 [9] BEIM (0) Break error interrupt mask
// 0x00000100 [8] PEIM (0) Parity error interrupt mask
// 0x00000080 [7] FEIM (0) Framing error interrupt mask
// 0x00000040 [6] RTIM (0) Receive timeout interrupt mask
// 0x00000020 [5] TXIM (0) Transmit interrupt mask
// 0x00000010 [4] RXIM (0) Receive interrupt mask
// 0x00000008 [3] DSRMIM (0) nUARTDSR modem interrupt mask
// 0x00000004 [2] DCDMIM (0) nUARTDCD modem interrupt mask
// 0x00000002 [1] CTSMIM (0) nUARTCTS modem interrupt mask
// 0x00000001 [0] RIMIM (0) nUARTRI modem interrupt mask
io_rw_32 imsc;
_REG_(UART_UARTRIS_OFFSET) // UART_UARTRIS
// Raw Interrupt Status Register, UARTRIS
// 0x00000400 [10] OERIS (0) Overrun error interrupt status
// 0x00000200 [9] BERIS (0) Break error interrupt status
// 0x00000100 [8] PERIS (0) Parity error interrupt status
// 0x00000080 [7] FERIS (0) Framing error interrupt status
// 0x00000040 [6] RTRIS (0) Receive timeout interrupt status
// 0x00000020 [5] TXRIS (0) Transmit interrupt status
// 0x00000010 [4] RXRIS (0) Receive interrupt status
// 0x00000008 [3] DSRRMIS (-) nUARTDSR modem interrupt status
// 0x00000004 [2] DCDRMIS (-) nUARTDCD modem interrupt status
// 0x00000002 [1] CTSRMIS (-) nUARTCTS modem interrupt status
// 0x00000001 [0] RIRMIS (-) nUARTRI modem interrupt status
io_ro_32 ris;
_REG_(UART_UARTMIS_OFFSET) // UART_UARTMIS
// Masked Interrupt Status Register, UARTMIS
// 0x00000400 [10] OEMIS (0) Overrun error masked interrupt status
// 0x00000200 [9] BEMIS (0) Break error masked interrupt status
// 0x00000100 [8] PEMIS (0) Parity error masked interrupt status
// 0x00000080 [7] FEMIS (0) Framing error masked interrupt status
// 0x00000040 [6] RTMIS (0) Receive timeout masked interrupt status
// 0x00000020 [5] TXMIS (0) Transmit masked interrupt status
// 0x00000010 [4] RXMIS (0) Receive masked interrupt status
// 0x00000008 [3] DSRMMIS (-) nUARTDSR modem masked interrupt status
// 0x00000004 [2] DCDMMIS (-) nUARTDCD modem masked interrupt status
// 0x00000002 [1] CTSMMIS (-) nUARTCTS modem masked interrupt status
// 0x00000001 [0] RIMMIS (-) nUARTRI modem masked interrupt status
io_ro_32 mis;
_REG_(UART_UARTICR_OFFSET) // UART_UARTICR
// Interrupt Clear Register, UARTICR
// 0x00000400 [10] OEIC (-) Overrun error interrupt clear
// 0x00000200 [9] BEIC (-) Break error interrupt clear
// 0x00000100 [8] PEIC (-) Parity error interrupt clear
// 0x00000080 [7] FEIC (-) Framing error interrupt clear
// 0x00000040 [6] RTIC (-) Receive timeout interrupt clear
// 0x00000020 [5] TXIC (-) Transmit interrupt clear
// 0x00000010 [4] RXIC (-) Receive interrupt clear
// 0x00000008 [3] DSRMIC (-) nUARTDSR modem interrupt clear
// 0x00000004 [2] DCDMIC (-) nUARTDCD modem interrupt clear
// 0x00000002 [1] CTSMIC (-) nUARTCTS modem interrupt clear
// 0x00000001 [0] RIMIC (-) nUARTRI modem interrupt clear
io_rw_32 icr;
_REG_(UART_UARTDMACR_OFFSET) // UART_UARTDMACR
// DMA Control Register, UARTDMACR
// 0x00000004 [2] DMAONERR (0) DMA on error
// 0x00000002 [1] TXDMAE (0) Transmit DMA enable
// 0x00000001 [0] RXDMAE (0) Receive DMA enable
io_rw_32 dmacr;
} uart_hw_t;
#define uart0_hw ((uart_hw_t *)UART0_BASE)
#define uart1_hw ((uart_hw_t *)UART1_BASE)
static_assert(sizeof (uart_hw_t) == 0x004c, "");
#endif // _HARDWARE_STRUCTS_UART_H

View File

@@ -0,0 +1,602 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_USB_H
#define _HARDWARE_STRUCTS_USB_H
/**
* \file rp2350/usb.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/usb.h"
#include "hardware/structs/usb_dpram.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_usb
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/usb.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(USB_ADDR_ENDP_OFFSET) // USB_ADDR_ENDP
// Device address and endpoint control
// 0x000f0000 [19:16] ENDPOINT (0x0) Device endpoint to send data to
// 0x0000007f [6:0] ADDRESS (0x00) In device mode, the address that the device should respond to
io_rw_32 dev_addr_ctrl;
// (Description copied from array index 0 register USB_ADDR_ENDP1 applies similarly to other array indexes)
_REG_(USB_ADDR_ENDP1_OFFSET) // USB_ADDR_ENDP1
// Interrupt endpoint 1
// 0x04000000 [26] INTEP_PREAMBLE (0) Interrupt EP requires preamble (is a low speed device on...
// 0x02000000 [25] INTEP_DIR (0) Direction of the interrupt endpoint
// 0x000f0000 [19:16] ENDPOINT (0x0) Endpoint number of the interrupt endpoint
// 0x0000007f [6:0] ADDRESS (0x00) Device address
io_rw_32 int_ep_addr_ctrl[15];
_REG_(USB_MAIN_CTRL_OFFSET) // USB_MAIN_CTRL
// Main control register
// 0x80000000 [31] SIM_TIMING (0) Reduced timings for simulation
// 0x00000004 [2] PHY_ISO (1) Isolates USB phy after controller power-up +
// 0x00000002 [1] HOST_NDEVICE (0) Device mode = 0, Host mode = 1
// 0x00000001 [0] CONTROLLER_EN (0) Enable controller
io_rw_32 main_ctrl;
_REG_(USB_SOF_WR_OFFSET) // USB_SOF_WR
// Set the SOF (Start of Frame) frame number in the host controller
// 0x000007ff [10:0] COUNT (0x000)
io_wo_32 sof_wr;
_REG_(USB_SOF_RD_OFFSET) // USB_SOF_RD
// Read the last SOF (Start of Frame) frame number seen
// 0x000007ff [10:0] COUNT (0x000)
io_ro_32 sof_rd;
_REG_(USB_SIE_CTRL_OFFSET) // USB_SIE_CTRL
// SIE control register
// 0x80000000 [31] EP0_INT_STALL (0) Device: Set bit in EP_STATUS_STALL_NAK when EP0 sends a STALL
// 0x40000000 [30] EP0_DOUBLE_BUF (0) Device: EP0 single buffered = 0, double buffered = 1
// 0x20000000 [29] EP0_INT_1BUF (0) Device: Set bit in BUFF_STATUS for every buffer completed on EP0
// 0x10000000 [28] EP0_INT_2BUF (0) Device: Set bit in BUFF_STATUS for every 2 buffers...
// 0x08000000 [27] EP0_INT_NAK (0) Device: Set bit in EP_STATUS_STALL_NAK when EP0 sends a NAK
// 0x04000000 [26] DIRECT_EN (0) Direct bus drive enable
// 0x02000000 [25] DIRECT_DP (0) Direct control of DP
// 0x01000000 [24] DIRECT_DM (0) Direct control of DM
// 0x00080000 [19] EP0_STOP_ON_SHORT_PACKET (0) Device: Stop EP0 on a short packet
// 0x00040000 [18] TRANSCEIVER_PD (0) Power down bus transceiver
// 0x00020000 [17] RPU_OPT (0) Device: Pull-up strength (0=1K2, 1=2k3)
// 0x00010000 [16] PULLUP_EN (0) Device: Enable pull up resistor
// 0x00008000 [15] PULLDOWN_EN (1) Host: Enable pull down resistors
// 0x00002000 [13] RESET_BUS (0) Host: Reset bus
// 0x00001000 [12] RESUME (0) Device: Remote wakeup
// 0x00000800 [11] VBUS_EN (0) Host: Enable VBUS
// 0x00000400 [10] KEEP_ALIVE_EN (0) Host: Enable keep alive packet (for low speed bus)
// 0x00000200 [9] SOF_EN (0) Host: Enable SOF generation (for full speed bus)
// 0x00000100 [8] SOF_SYNC (0) Host: Delay packet(s) until after SOF
// 0x00000040 [6] PREAMBLE_EN (0) Host: Preable enable for LS device on FS hub
// 0x00000010 [4] STOP_TRANS (0) Host: Stop transaction
// 0x00000008 [3] RECEIVE_DATA (0) Host: Receive transaction (IN to host)
// 0x00000004 [2] SEND_DATA (0) Host: Send transaction (OUT from host)
// 0x00000002 [1] SEND_SETUP (0) Host: Send Setup packet
// 0x00000001 [0] START_TRANS (0) Host: Start transaction
io_rw_32 sie_ctrl;
_REG_(USB_SIE_STATUS_OFFSET) // USB_SIE_STATUS
// SIE status register
// 0x80000000 [31] DATA_SEQ_ERROR (0) Data Sequence Error
// 0x40000000 [30] ACK_REC (0) ACK received
// 0x20000000 [29] STALL_REC (0) Host: STALL received
// 0x10000000 [28] NAK_REC (0) Host: NAK received
// 0x08000000 [27] RX_TIMEOUT (0) RX timeout is raised by both the host and device if an...
// 0x04000000 [26] RX_OVERFLOW (0) RX overflow is raised by the Serial RX engine if the...
// 0x02000000 [25] BIT_STUFF_ERROR (0) Bit Stuff Error
// 0x01000000 [24] CRC_ERROR (0) CRC Error
// 0x00800000 [23] ENDPOINT_ERROR (0) An endpoint has encountered an error
// 0x00080000 [19] BUS_RESET (0) Device: bus reset received
// 0x00040000 [18] TRANS_COMPLETE (0) Transaction complete
// 0x00020000 [17] SETUP_REC (0) Device: Setup packet received
// 0x00010000 [16] CONNECTED (0) Device: connected
// 0x00001000 [12] RX_SHORT_PACKET (0) Device or Host has received a short packet
// 0x00000800 [11] RESUME (0) Host: Device has initiated a remote resume
// 0x00000400 [10] VBUS_OVER_CURR (0) VBUS over current detected
// 0x00000300 [9:8] SPEED (0x0) Host: device speed
// 0x00000010 [4] SUSPENDED (0) Bus in suspended state
// 0x0000000c [3:2] LINE_STATE (0x0) USB bus line state
// 0x00000001 [0] VBUS_DETECTED (0) Device: VBUS Detected
io_rw_32 sie_status;
_REG_(USB_INT_EP_CTRL_OFFSET) // USB_INT_EP_CTRL
// interrupt endpoint control register
// 0x0000fffe [15:1] INT_EP_ACTIVE (0x0000) Host: Enable interrupt endpoint 1 -> 15
io_rw_32 int_ep_ctrl;
_REG_(USB_BUFF_STATUS_OFFSET) // USB_BUFF_STATUS
// Buffer status register
// 0x80000000 [31] EP15_OUT (0)
// 0x40000000 [30] EP15_IN (0)
// 0x20000000 [29] EP14_OUT (0)
// 0x10000000 [28] EP14_IN (0)
// 0x08000000 [27] EP13_OUT (0)
// 0x04000000 [26] EP13_IN (0)
// 0x02000000 [25] EP12_OUT (0)
// 0x01000000 [24] EP12_IN (0)
// 0x00800000 [23] EP11_OUT (0)
// 0x00400000 [22] EP11_IN (0)
// 0x00200000 [21] EP10_OUT (0)
// 0x00100000 [20] EP10_IN (0)
// 0x00080000 [19] EP9_OUT (0)
// 0x00040000 [18] EP9_IN (0)
// 0x00020000 [17] EP8_OUT (0)
// 0x00010000 [16] EP8_IN (0)
// 0x00008000 [15] EP7_OUT (0)
// 0x00004000 [14] EP7_IN (0)
// 0x00002000 [13] EP6_OUT (0)
// 0x00001000 [12] EP6_IN (0)
// 0x00000800 [11] EP5_OUT (0)
// 0x00000400 [10] EP5_IN (0)
// 0x00000200 [9] EP4_OUT (0)
// 0x00000100 [8] EP4_IN (0)
// 0x00000080 [7] EP3_OUT (0)
// 0x00000040 [6] EP3_IN (0)
// 0x00000020 [5] EP2_OUT (0)
// 0x00000010 [4] EP2_IN (0)
// 0x00000008 [3] EP1_OUT (0)
// 0x00000004 [2] EP1_IN (0)
// 0x00000002 [1] EP0_OUT (0)
// 0x00000001 [0] EP0_IN (0)
io_rw_32 buf_status;
_REG_(USB_BUFF_CPU_SHOULD_HANDLE_OFFSET) // USB_BUFF_CPU_SHOULD_HANDLE
// Which of the double buffers should be handled
// 0x80000000 [31] EP15_OUT (0)
// 0x40000000 [30] EP15_IN (0)
// 0x20000000 [29] EP14_OUT (0)
// 0x10000000 [28] EP14_IN (0)
// 0x08000000 [27] EP13_OUT (0)
// 0x04000000 [26] EP13_IN (0)
// 0x02000000 [25] EP12_OUT (0)
// 0x01000000 [24] EP12_IN (0)
// 0x00800000 [23] EP11_OUT (0)
// 0x00400000 [22] EP11_IN (0)
// 0x00200000 [21] EP10_OUT (0)
// 0x00100000 [20] EP10_IN (0)
// 0x00080000 [19] EP9_OUT (0)
// 0x00040000 [18] EP9_IN (0)
// 0x00020000 [17] EP8_OUT (0)
// 0x00010000 [16] EP8_IN (0)
// 0x00008000 [15] EP7_OUT (0)
// 0x00004000 [14] EP7_IN (0)
// 0x00002000 [13] EP6_OUT (0)
// 0x00001000 [12] EP6_IN (0)
// 0x00000800 [11] EP5_OUT (0)
// 0x00000400 [10] EP5_IN (0)
// 0x00000200 [9] EP4_OUT (0)
// 0x00000100 [8] EP4_IN (0)
// 0x00000080 [7] EP3_OUT (0)
// 0x00000040 [6] EP3_IN (0)
// 0x00000020 [5] EP2_OUT (0)
// 0x00000010 [4] EP2_IN (0)
// 0x00000008 [3] EP1_OUT (0)
// 0x00000004 [2] EP1_IN (0)
// 0x00000002 [1] EP0_OUT (0)
// 0x00000001 [0] EP0_IN (0)
io_ro_32 buf_cpu_should_handle;
_REG_(USB_EP_ABORT_OFFSET) // USB_EP_ABORT
// Device only: Can be set to ignore the buffer control register for this endpoint in case you...
// 0x80000000 [31] EP15_OUT (0)
// 0x40000000 [30] EP15_IN (0)
// 0x20000000 [29] EP14_OUT (0)
// 0x10000000 [28] EP14_IN (0)
// 0x08000000 [27] EP13_OUT (0)
// 0x04000000 [26] EP13_IN (0)
// 0x02000000 [25] EP12_OUT (0)
// 0x01000000 [24] EP12_IN (0)
// 0x00800000 [23] EP11_OUT (0)
// 0x00400000 [22] EP11_IN (0)
// 0x00200000 [21] EP10_OUT (0)
// 0x00100000 [20] EP10_IN (0)
// 0x00080000 [19] EP9_OUT (0)
// 0x00040000 [18] EP9_IN (0)
// 0x00020000 [17] EP8_OUT (0)
// 0x00010000 [16] EP8_IN (0)
// 0x00008000 [15] EP7_OUT (0)
// 0x00004000 [14] EP7_IN (0)
// 0x00002000 [13] EP6_OUT (0)
// 0x00001000 [12] EP6_IN (0)
// 0x00000800 [11] EP5_OUT (0)
// 0x00000400 [10] EP5_IN (0)
// 0x00000200 [9] EP4_OUT (0)
// 0x00000100 [8] EP4_IN (0)
// 0x00000080 [7] EP3_OUT (0)
// 0x00000040 [6] EP3_IN (0)
// 0x00000020 [5] EP2_OUT (0)
// 0x00000010 [4] EP2_IN (0)
// 0x00000008 [3] EP1_OUT (0)
// 0x00000004 [2] EP1_IN (0)
// 0x00000002 [1] EP0_OUT (0)
// 0x00000001 [0] EP0_IN (0)
io_rw_32 abort;
_REG_(USB_EP_ABORT_DONE_OFFSET) // USB_EP_ABORT_DONE
// Device only: Used in conjunction with `EP_ABORT`
// 0x80000000 [31] EP15_OUT (0)
// 0x40000000 [30] EP15_IN (0)
// 0x20000000 [29] EP14_OUT (0)
// 0x10000000 [28] EP14_IN (0)
// 0x08000000 [27] EP13_OUT (0)
// 0x04000000 [26] EP13_IN (0)
// 0x02000000 [25] EP12_OUT (0)
// 0x01000000 [24] EP12_IN (0)
// 0x00800000 [23] EP11_OUT (0)
// 0x00400000 [22] EP11_IN (0)
// 0x00200000 [21] EP10_OUT (0)
// 0x00100000 [20] EP10_IN (0)
// 0x00080000 [19] EP9_OUT (0)
// 0x00040000 [18] EP9_IN (0)
// 0x00020000 [17] EP8_OUT (0)
// 0x00010000 [16] EP8_IN (0)
// 0x00008000 [15] EP7_OUT (0)
// 0x00004000 [14] EP7_IN (0)
// 0x00002000 [13] EP6_OUT (0)
// 0x00001000 [12] EP6_IN (0)
// 0x00000800 [11] EP5_OUT (0)
// 0x00000400 [10] EP5_IN (0)
// 0x00000200 [9] EP4_OUT (0)
// 0x00000100 [8] EP4_IN (0)
// 0x00000080 [7] EP3_OUT (0)
// 0x00000040 [6] EP3_IN (0)
// 0x00000020 [5] EP2_OUT (0)
// 0x00000010 [4] EP2_IN (0)
// 0x00000008 [3] EP1_OUT (0)
// 0x00000004 [2] EP1_IN (0)
// 0x00000002 [1] EP0_OUT (0)
// 0x00000001 [0] EP0_IN (0)
io_rw_32 abort_done;
_REG_(USB_EP_STALL_ARM_OFFSET) // USB_EP_STALL_ARM
// Device: this bit must be set in conjunction with the `STALL` bit in the buffer control register...
// 0x00000002 [1] EP0_OUT (0)
// 0x00000001 [0] EP0_IN (0)
io_rw_32 ep_stall_arm;
_REG_(USB_NAK_POLL_OFFSET) // USB_NAK_POLL
// Used by the host controller
// 0xf0000000 [31:28] RETRY_COUNT_HI (0x0) Bits 9:6 of nak_retry count
// 0x08000000 [27] EPX_STOPPED_ON_NAK (0) EPX polling has stopped because a nak was received
// 0x04000000 [26] STOP_EPX_ON_NAK (0) Stop polling epx when a nak is received
// 0x03ff0000 [25:16] DELAY_FS (0x010) NAK polling interval for a full speed device
// 0x0000fc00 [15:10] RETRY_COUNT_LO (0x00) Bits 5:0 of nak_retry_count
// 0x000003ff [9:0] DELAY_LS (0x010) NAK polling interval for a low speed device
io_rw_32 nak_poll;
_REG_(USB_EP_STATUS_STALL_NAK_OFFSET) // USB_EP_STATUS_STALL_NAK
// Device: bits are set when the `IRQ_ON_NAK` or `IRQ_ON_STALL` bits are set
// 0x80000000 [31] EP15_OUT (0)
// 0x40000000 [30] EP15_IN (0)
// 0x20000000 [29] EP14_OUT (0)
// 0x10000000 [28] EP14_IN (0)
// 0x08000000 [27] EP13_OUT (0)
// 0x04000000 [26] EP13_IN (0)
// 0x02000000 [25] EP12_OUT (0)
// 0x01000000 [24] EP12_IN (0)
// 0x00800000 [23] EP11_OUT (0)
// 0x00400000 [22] EP11_IN (0)
// 0x00200000 [21] EP10_OUT (0)
// 0x00100000 [20] EP10_IN (0)
// 0x00080000 [19] EP9_OUT (0)
// 0x00040000 [18] EP9_IN (0)
// 0x00020000 [17] EP8_OUT (0)
// 0x00010000 [16] EP8_IN (0)
// 0x00008000 [15] EP7_OUT (0)
// 0x00004000 [14] EP7_IN (0)
// 0x00002000 [13] EP6_OUT (0)
// 0x00001000 [12] EP6_IN (0)
// 0x00000800 [11] EP5_OUT (0)
// 0x00000400 [10] EP5_IN (0)
// 0x00000200 [9] EP4_OUT (0)
// 0x00000100 [8] EP4_IN (0)
// 0x00000080 [7] EP3_OUT (0)
// 0x00000040 [6] EP3_IN (0)
// 0x00000020 [5] EP2_OUT (0)
// 0x00000010 [4] EP2_IN (0)
// 0x00000008 [3] EP1_OUT (0)
// 0x00000004 [2] EP1_IN (0)
// 0x00000002 [1] EP0_OUT (0)
// 0x00000001 [0] EP0_IN (0)
io_rw_32 ep_nak_stall_status;
_REG_(USB_USB_MUXING_OFFSET) // USB_USB_MUXING
// Where to connect the USB controller
// 0x80000000 [31] SWAP_DPDM (0) Swap the USB PHY DP and DM pins and all related controls...
// 0x00000010 [4] USBPHY_AS_GPIO (0) Use the usb DP and DM pins as GPIO pins instead of...
// 0x00000008 [3] SOFTCON (0)
// 0x00000004 [2] TO_DIGITAL_PAD (0)
// 0x00000002 [1] TO_EXTPHY (0)
// 0x00000001 [0] TO_PHY (1)
io_rw_32 muxing;
_REG_(USB_USB_PWR_OFFSET) // USB_USB_PWR
// Overrides for the power signals in the event that the VBUS signals are not hooked up to GPIO
// 0x00000020 [5] OVERCURR_DETECT_EN (0)
// 0x00000010 [4] OVERCURR_DETECT (0)
// 0x00000008 [3] VBUS_DETECT_OVERRIDE_EN (0)
// 0x00000004 [2] VBUS_DETECT (0)
// 0x00000002 [1] VBUS_EN_OVERRIDE_EN (0)
// 0x00000001 [0] VBUS_EN (0)
io_rw_32 pwr;
_REG_(USB_USBPHY_DIRECT_OFFSET) // USB_USBPHY_DIRECT
// This register allows for direct control of the USB phy
// 0x02000000 [25] RX_DM_OVERRIDE (0) Override rx_dm value into controller
// 0x01000000 [24] RX_DP_OVERRIDE (0) Override rx_dp value into controller
// 0x00800000 [23] RX_DD_OVERRIDE (0) Override rx_dd value into controller
// 0x00400000 [22] DM_OVV (0) DM over voltage
// 0x00200000 [21] DP_OVV (0) DP over voltage
// 0x00100000 [20] DM_OVCN (0) DM overcurrent
// 0x00080000 [19] DP_OVCN (0) DP overcurrent
// 0x00040000 [18] RX_DM (0) DPM pin state
// 0x00020000 [17] RX_DP (0) DPP pin state
// 0x00010000 [16] RX_DD (0) Differential RX
// 0x00008000 [15] TX_DIFFMODE (0) TX_DIFFMODE=0: Single ended mode +
// 0x00004000 [14] TX_FSSLEW (0) TX_FSSLEW=0: Low speed slew rate +
// 0x00002000 [13] TX_PD (0) TX power down override (if override enable is set)
// 0x00001000 [12] RX_PD (0) RX power down override (if override enable is set)
// 0x00000800 [11] TX_DM (0) Output data
// 0x00000400 [10] TX_DP (0) Output data
// 0x00000200 [9] TX_DM_OE (0) Output enable
// 0x00000100 [8] TX_DP_OE (0) Output enable
// 0x00000040 [6] DM_PULLDN_EN (0) DM pull down enable
// 0x00000020 [5] DM_PULLUP_EN (0) DM pull up enable
// 0x00000010 [4] DM_PULLUP_HISEL (0) Enable the second DM pull up resistor
// 0x00000004 [2] DP_PULLDN_EN (0) DP pull down enable
// 0x00000002 [1] DP_PULLUP_EN (0) DP pull up enable
// 0x00000001 [0] DP_PULLUP_HISEL (0) Enable the second DP pull up resistor
io_rw_32 phy_direct;
_REG_(USB_USBPHY_DIRECT_OVERRIDE_OFFSET) // USB_USBPHY_DIRECT_OVERRIDE
// Override enable for each control in usbphy_direct
// 0x00040000 [18] RX_DM_OVERRIDE_EN (0)
// 0x00020000 [17] RX_DP_OVERRIDE_EN (0)
// 0x00010000 [16] RX_DD_OVERRIDE_EN (0)
// 0x00008000 [15] TX_DIFFMODE_OVERRIDE_EN (0)
// 0x00001000 [12] DM_PULLUP_OVERRIDE_EN (0)
// 0x00000800 [11] TX_FSSLEW_OVERRIDE_EN (0)
// 0x00000400 [10] TX_PD_OVERRIDE_EN (0)
// 0x00000200 [9] RX_PD_OVERRIDE_EN (0)
// 0x00000100 [8] TX_DM_OVERRIDE_EN (0)
// 0x00000080 [7] TX_DP_OVERRIDE_EN (0)
// 0x00000040 [6] TX_DM_OE_OVERRIDE_EN (0)
// 0x00000020 [5] TX_DP_OE_OVERRIDE_EN (0)
// 0x00000010 [4] DM_PULLDN_EN_OVERRIDE_EN (0)
// 0x00000008 [3] DP_PULLDN_EN_OVERRIDE_EN (0)
// 0x00000004 [2] DP_PULLUP_EN_OVERRIDE_EN (0)
// 0x00000002 [1] DM_PULLUP_HISEL_OVERRIDE_EN (0)
// 0x00000001 [0] DP_PULLUP_HISEL_OVERRIDE_EN (0)
io_rw_32 phy_direct_override;
_REG_(USB_USBPHY_TRIM_OFFSET) // USB_USBPHY_TRIM
// Used to adjust trim values of USB phy pull down resistors
// 0x00001f00 [12:8] DM_PULLDN_TRIM (0x1f) Value to drive to USB PHY +
// 0x0000001f [4:0] DP_PULLDN_TRIM (0x1f) Value to drive to USB PHY +
io_rw_32 phy_trim;
_REG_(USB_LINESTATE_TUNING_OFFSET) // USB_LINESTATE_TUNING
// Used for debug only
// 0x00000f00 [11:8] SPARE_FIX (0x0)
// 0x00000080 [7] DEV_LS_WAKE_FIX (1) Device - exit suspend on any non-idle signalling, not...
// 0x00000040 [6] DEV_RX_ERR_QUIESCE (1) Device - suppress repeated errors until the device FSM...
// 0x00000020 [5] SIE_RX_CHATTER_SE0_FIX (1) RX - when recovering from line chatter or bitstuff...
// 0x00000010 [4] SIE_RX_BITSTUFF_FIX (1) RX - when a bitstuff error is signalled by rx_dasm,...
// 0x00000008 [3] DEV_BUFF_CONTROL_DOUBLE_READ_FIX (1) Device - the controller FSM performs two reads of the...
// 0x00000004 [2] MULTI_HUB_FIX (0) Host - increase inter-packet and turnaround timeouts to...
// 0x00000002 [1] LINESTATE_DELAY (0) Device/Host - add an extra 1-bit debounce of linestate sampling
// 0x00000001 [0] RCV_DELAY (0) Device - register the received data to account for hub...
io_rw_32 linestate_tuning;
_REG_(USB_INTR_OFFSET) // USB_INTR
// Raw Interrupts
// 0x00800000 [23] EPX_STOPPED_ON_NAK (0) Source: NAK_POLL
// 0x00400000 [22] DEV_SM_WATCHDOG_FIRED (0) Source: DEV_SM_WATCHDOG
// 0x00200000 [21] ENDPOINT_ERROR (0) Source: SIE_STATUS
// 0x00100000 [20] RX_SHORT_PACKET (0) Source: SIE_STATUS
// 0x00080000 [19] EP_STALL_NAK (0) Raised when any bit in EP_STATUS_STALL_NAK is set
// 0x00040000 [18] ABORT_DONE (0) Raised when any bit in ABORT_DONE is set
// 0x00020000 [17] DEV_SOF (0) Set every time the device receives a SOF (Start of Frame) packet
// 0x00010000 [16] SETUP_REQ (0) Device
// 0x00008000 [15] DEV_RESUME_FROM_HOST (0) Set when the device receives a resume from the host
// 0x00004000 [14] DEV_SUSPEND (0) Set when the device suspend state changes
// 0x00002000 [13] DEV_CONN_DIS (0) Set when the device connection state changes
// 0x00001000 [12] BUS_RESET (0) Source: SIE_STATUS
// 0x00000800 [11] VBUS_DETECT (0) Source: SIE_STATUS
// 0x00000400 [10] STALL (0) Source: SIE_STATUS
// 0x00000200 [9] ERROR_CRC (0) Source: SIE_STATUS
// 0x00000100 [8] ERROR_BIT_STUFF (0) Source: SIE_STATUS
// 0x00000080 [7] ERROR_RX_OVERFLOW (0) Source: SIE_STATUS
// 0x00000040 [6] ERROR_RX_TIMEOUT (0) Source: SIE_STATUS
// 0x00000020 [5] ERROR_DATA_SEQ (0) Source: SIE_STATUS
// 0x00000010 [4] BUFF_STATUS (0) Raised when any bit in BUFF_STATUS is set
// 0x00000008 [3] TRANS_COMPLETE (0) Raised every time SIE_STATUS
// 0x00000004 [2] HOST_SOF (0) Host: raised every time the host sends a SOF (Start of Frame)
// 0x00000002 [1] HOST_RESUME (0) Host: raised when a device wakes up the host
// 0x00000001 [0] HOST_CONN_DIS (0) Host: raised when a device is connected or disconnected (i
io_ro_32 intr;
_REG_(USB_INTE_OFFSET) // USB_INTE
// Interrupt Enable
// 0x00800000 [23] EPX_STOPPED_ON_NAK (0) Source: NAK_POLL
// 0x00400000 [22] DEV_SM_WATCHDOG_FIRED (0) Source: DEV_SM_WATCHDOG
// 0x00200000 [21] ENDPOINT_ERROR (0) Source: SIE_STATUS
// 0x00100000 [20] RX_SHORT_PACKET (0) Source: SIE_STATUS
// 0x00080000 [19] EP_STALL_NAK (0) Raised when any bit in EP_STATUS_STALL_NAK is set
// 0x00040000 [18] ABORT_DONE (0) Raised when any bit in ABORT_DONE is set
// 0x00020000 [17] DEV_SOF (0) Set every time the device receives a SOF (Start of Frame) packet
// 0x00010000 [16] SETUP_REQ (0) Device
// 0x00008000 [15] DEV_RESUME_FROM_HOST (0) Set when the device receives a resume from the host
// 0x00004000 [14] DEV_SUSPEND (0) Set when the device suspend state changes
// 0x00002000 [13] DEV_CONN_DIS (0) Set when the device connection state changes
// 0x00001000 [12] BUS_RESET (0) Source: SIE_STATUS
// 0x00000800 [11] VBUS_DETECT (0) Source: SIE_STATUS
// 0x00000400 [10] STALL (0) Source: SIE_STATUS
// 0x00000200 [9] ERROR_CRC (0) Source: SIE_STATUS
// 0x00000100 [8] ERROR_BIT_STUFF (0) Source: SIE_STATUS
// 0x00000080 [7] ERROR_RX_OVERFLOW (0) Source: SIE_STATUS
// 0x00000040 [6] ERROR_RX_TIMEOUT (0) Source: SIE_STATUS
// 0x00000020 [5] ERROR_DATA_SEQ (0) Source: SIE_STATUS
// 0x00000010 [4] BUFF_STATUS (0) Raised when any bit in BUFF_STATUS is set
// 0x00000008 [3] TRANS_COMPLETE (0) Raised every time SIE_STATUS
// 0x00000004 [2] HOST_SOF (0) Host: raised every time the host sends a SOF (Start of Frame)
// 0x00000002 [1] HOST_RESUME (0) Host: raised when a device wakes up the host
// 0x00000001 [0] HOST_CONN_DIS (0) Host: raised when a device is connected or disconnected (i
io_rw_32 inte;
_REG_(USB_INTF_OFFSET) // USB_INTF
// Interrupt Force
// 0x00800000 [23] EPX_STOPPED_ON_NAK (0) Source: NAK_POLL
// 0x00400000 [22] DEV_SM_WATCHDOG_FIRED (0) Source: DEV_SM_WATCHDOG
// 0x00200000 [21] ENDPOINT_ERROR (0) Source: SIE_STATUS
// 0x00100000 [20] RX_SHORT_PACKET (0) Source: SIE_STATUS
// 0x00080000 [19] EP_STALL_NAK (0) Raised when any bit in EP_STATUS_STALL_NAK is set
// 0x00040000 [18] ABORT_DONE (0) Raised when any bit in ABORT_DONE is set
// 0x00020000 [17] DEV_SOF (0) Set every time the device receives a SOF (Start of Frame) packet
// 0x00010000 [16] SETUP_REQ (0) Device
// 0x00008000 [15] DEV_RESUME_FROM_HOST (0) Set when the device receives a resume from the host
// 0x00004000 [14] DEV_SUSPEND (0) Set when the device suspend state changes
// 0x00002000 [13] DEV_CONN_DIS (0) Set when the device connection state changes
// 0x00001000 [12] BUS_RESET (0) Source: SIE_STATUS
// 0x00000800 [11] VBUS_DETECT (0) Source: SIE_STATUS
// 0x00000400 [10] STALL (0) Source: SIE_STATUS
// 0x00000200 [9] ERROR_CRC (0) Source: SIE_STATUS
// 0x00000100 [8] ERROR_BIT_STUFF (0) Source: SIE_STATUS
// 0x00000080 [7] ERROR_RX_OVERFLOW (0) Source: SIE_STATUS
// 0x00000040 [6] ERROR_RX_TIMEOUT (0) Source: SIE_STATUS
// 0x00000020 [5] ERROR_DATA_SEQ (0) Source: SIE_STATUS
// 0x00000010 [4] BUFF_STATUS (0) Raised when any bit in BUFF_STATUS is set
// 0x00000008 [3] TRANS_COMPLETE (0) Raised every time SIE_STATUS
// 0x00000004 [2] HOST_SOF (0) Host: raised every time the host sends a SOF (Start of Frame)
// 0x00000002 [1] HOST_RESUME (0) Host: raised when a device wakes up the host
// 0x00000001 [0] HOST_CONN_DIS (0) Host: raised when a device is connected or disconnected (i
io_rw_32 intf;
_REG_(USB_INTS_OFFSET) // USB_INTS
// Interrupt status after masking & forcing
// 0x00800000 [23] EPX_STOPPED_ON_NAK (0) Source: NAK_POLL
// 0x00400000 [22] DEV_SM_WATCHDOG_FIRED (0) Source: DEV_SM_WATCHDOG
// 0x00200000 [21] ENDPOINT_ERROR (0) Source: SIE_STATUS
// 0x00100000 [20] RX_SHORT_PACKET (0) Source: SIE_STATUS
// 0x00080000 [19] EP_STALL_NAK (0) Raised when any bit in EP_STATUS_STALL_NAK is set
// 0x00040000 [18] ABORT_DONE (0) Raised when any bit in ABORT_DONE is set
// 0x00020000 [17] DEV_SOF (0) Set every time the device receives a SOF (Start of Frame) packet
// 0x00010000 [16] SETUP_REQ (0) Device
// 0x00008000 [15] DEV_RESUME_FROM_HOST (0) Set when the device receives a resume from the host
// 0x00004000 [14] DEV_SUSPEND (0) Set when the device suspend state changes
// 0x00002000 [13] DEV_CONN_DIS (0) Set when the device connection state changes
// 0x00001000 [12] BUS_RESET (0) Source: SIE_STATUS
// 0x00000800 [11] VBUS_DETECT (0) Source: SIE_STATUS
// 0x00000400 [10] STALL (0) Source: SIE_STATUS
// 0x00000200 [9] ERROR_CRC (0) Source: SIE_STATUS
// 0x00000100 [8] ERROR_BIT_STUFF (0) Source: SIE_STATUS
// 0x00000080 [7] ERROR_RX_OVERFLOW (0) Source: SIE_STATUS
// 0x00000040 [6] ERROR_RX_TIMEOUT (0) Source: SIE_STATUS
// 0x00000020 [5] ERROR_DATA_SEQ (0) Source: SIE_STATUS
// 0x00000010 [4] BUFF_STATUS (0) Raised when any bit in BUFF_STATUS is set
// 0x00000008 [3] TRANS_COMPLETE (0) Raised every time SIE_STATUS
// 0x00000004 [2] HOST_SOF (0) Host: raised every time the host sends a SOF (Start of Frame)
// 0x00000002 [1] HOST_RESUME (0) Host: raised when a device wakes up the host
// 0x00000001 [0] HOST_CONN_DIS (0) Host: raised when a device is connected or disconnected (i
io_ro_32 ints;
uint32_t _pad0[25];
_REG_(USB_SOF_TIMESTAMP_RAW_OFFSET) // USB_SOF_TIMESTAMP_RAW
// Device only
// 0x001fffff [20:0] SOF_TIMESTAMP_RAW (0x000000)
io_ro_32 sof_timestamp_raw;
_REG_(USB_SOF_TIMESTAMP_LAST_OFFSET) // USB_SOF_TIMESTAMP_LAST
// Device only
// 0x001fffff [20:0] SOF_TIMESTAMP_LAST (0x000000)
io_ro_32 sof_timestamp_last;
_REG_(USB_SM_STATE_OFFSET) // USB_SM_STATE
// 0x00000f00 [11:8] RX_DASM (0x0)
// 0x000000e0 [7:5] BC_STATE (0x0)
// 0x0000001f [4:0] STATE (0x00)
io_ro_32 sm_state;
_REG_(USB_EP_TX_ERROR_OFFSET) // USB_EP_TX_ERROR
// TX error count for each endpoint
// 0xc0000000 [31:30] EP15 (0x0)
// 0x30000000 [29:28] EP14 (0x0)
// 0x0c000000 [27:26] EP13 (0x0)
// 0x03000000 [25:24] EP12 (0x0)
// 0x00c00000 [23:22] EP11 (0x0)
// 0x00300000 [21:20] EP10 (0x0)
// 0x000c0000 [19:18] EP9 (0x0)
// 0x00030000 [17:16] EP8 (0x0)
// 0x0000c000 [15:14] EP7 (0x0)
// 0x00003000 [13:12] EP6 (0x0)
// 0x00000c00 [11:10] EP5 (0x0)
// 0x00000300 [9:8] EP4 (0x0)
// 0x000000c0 [7:6] EP3 (0x0)
// 0x00000030 [5:4] EP2 (0x0)
// 0x0000000c [3:2] EP1 (0x0)
// 0x00000003 [1:0] EP0 (0x0)
io_rw_32 ep_tx_error;
_REG_(USB_EP_RX_ERROR_OFFSET) // USB_EP_RX_ERROR
// RX error count for each endpoint
// 0x80000000 [31] EP15_SEQ (0)
// 0x40000000 [30] EP15_TRANSACTION (0)
// 0x20000000 [29] EP14_SEQ (0)
// 0x10000000 [28] EP14_TRANSACTION (0)
// 0x08000000 [27] EP13_SEQ (0)
// 0x04000000 [26] EP13_TRANSACTION (0)
// 0x02000000 [25] EP12_SEQ (0)
// 0x01000000 [24] EP12_TRANSACTION (0)
// 0x00800000 [23] EP11_SEQ (0)
// 0x00400000 [22] EP11_TRANSACTION (0)
// 0x00200000 [21] EP10_SEQ (0)
// 0x00100000 [20] EP10_TRANSACTION (0)
// 0x00080000 [19] EP9_SEQ (0)
// 0x00040000 [18] EP9_TRANSACTION (0)
// 0x00020000 [17] EP8_SEQ (0)
// 0x00010000 [16] EP8_TRANSACTION (0)
// 0x00008000 [15] EP7_SEQ (0)
// 0x00004000 [14] EP7_TRANSACTION (0)
// 0x00002000 [13] EP6_SEQ (0)
// 0x00001000 [12] EP6_TRANSACTION (0)
// 0x00000800 [11] EP5_SEQ (0)
// 0x00000400 [10] EP5_TRANSACTION (0)
// 0x00000200 [9] EP4_SEQ (0)
// 0x00000100 [8] EP4_TRANSACTION (0)
// 0x00000080 [7] EP3_SEQ (0)
// 0x00000040 [6] EP3_TRANSACTION (0)
// 0x00000020 [5] EP2_SEQ (0)
// 0x00000010 [4] EP2_TRANSACTION (0)
// 0x00000008 [3] EP1_SEQ (0)
// 0x00000004 [2] EP1_TRANSACTION (0)
// 0x00000002 [1] EP0_SEQ (0)
// 0x00000001 [0] EP0_TRANSACTION (0)
io_rw_32 ep_rx_error;
_REG_(USB_DEV_SM_WATCHDOG_OFFSET) // USB_DEV_SM_WATCHDOG
// Watchdog that forces the device state machine to idle and raises an interrupt if the device...
// 0x00100000 [20] FIRED (0)
// 0x00080000 [19] RESET (0) Set to 1 to forcibly reset the device state machine on...
// 0x00040000 [18] ENABLE (0)
// 0x0003ffff [17:0] LIMIT (0x00000)
io_rw_32 dev_sm_watchdog;
} usb_hw_t;
#define usb_hw ((usb_hw_t *)USBCTRL_REGS_BASE)
static_assert(sizeof (usb_hw_t) == 0x0118, "");
#endif // _HARDWARE_STRUCTS_USB_H

View File

@@ -0,0 +1,128 @@
/**
* Copyright (c) 2024 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_USB_DPRAM_H
#define _HARDWARE_STRUCTS_USB_DPRAM_H
#include "hardware/address_mapped.h"
#include "hardware/regs/usb.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_usb
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/usb.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
// 0-15
#define USB_NUM_ENDPOINTS 16
// allow user to restrict number of endpoints available to save RAN
#ifndef USB_MAX_ENDPOINTS
#define USB_MAX_ENDPOINTS USB_NUM_ENDPOINTS
#endif
// 1-15
#define USB_HOST_INTERRUPT_ENDPOINTS (USB_NUM_ENDPOINTS - 1)
// Endpoint buffer control bits
#define USB_BUF_CTRL_FULL 0x00008000u
#define USB_BUF_CTRL_LAST 0x00004000u
#define USB_BUF_CTRL_DATA0_PID 0x00000000u
#define USB_BUF_CTRL_DATA1_PID 0x00002000u
#define USB_BUF_CTRL_SEL 0x00001000u
#define USB_BUF_CTRL_STALL 0x00000800u
#define USB_BUF_CTRL_AVAIL 0x00000400u
#define USB_BUF_CTRL_LEN_MASK 0x000003FFu
#define USB_BUF_CTRL_LEN_LSB 0
// ep_inout_ctrl bits
#define EP_CTRL_ENABLE_BITS (1u << 31u)
#define EP_CTRL_DOUBLE_BUFFERED_BITS (1u << 30)
#define EP_CTRL_INTERRUPT_PER_BUFFER (1u << 29)
#define EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER (1u << 28)
#define EP_CTRL_INTERRUPT_ON_NAK (1u << 16)
#define EP_CTRL_INTERRUPT_ON_STALL (1u << 17)
#define EP_CTRL_BUFFER_TYPE_LSB 26u
#define EP_CTRL_HOST_INTERRUPT_INTERVAL_LSB 16u
#define USB_DPRAM_SIZE 4096u
// PICO_CONFIG: USB_DPRAM_MAX, Set amount of USB RAM used by USB system, min=0, max=4096, default=4096, group=hardware_usb
// Allow user to claim some of the USB RAM for themselves
#ifndef USB_DPRAM_MAX
#define USB_DPRAM_MAX USB_DPRAM_SIZE
#endif
// Define maximum packet sizes
#define USB_MAX_ISO_PACKET_SIZE 1023
#define USB_MAX_PACKET_SIZE 64
typedef struct {
// 4K of DPSRAM at beginning. Note this supports 8, 16, and 32 bit accesses
volatile uint8_t setup_packet[8]; // First 8 bytes are always for setup packets
// Starts at ep1
struct usb_device_dpram_ep_ctrl {
io_rw_32 in;
io_rw_32 out;
} ep_ctrl[USB_NUM_ENDPOINTS - 1];
// Starts at ep0
struct usb_device_dpram_ep_buf_ctrl {
io_rw_32 in;
io_rw_32 out;
} ep_buf_ctrl[USB_NUM_ENDPOINTS];
// EP0 buffers are fixed. Assumes single buffered mode for EP0
uint8_t ep0_buf_a[0x40];
uint8_t ep0_buf_b[0x40];
// Rest of DPRAM can be carved up as needed
uint8_t epx_data[USB_DPRAM_MAX - 0x180];
} usb_device_dpram_t;
static_assert(sizeof(usb_device_dpram_t) == USB_DPRAM_MAX, "");
static_assert(offsetof(usb_device_dpram_t, epx_data) == 0x180, "");
typedef struct {
// 4K of DPSRAM at beginning. Note this supports 8, 16, and 32 bit accesses
volatile uint8_t setup_packet[8]; // First 8 bytes are always for setup packets
// Interrupt endpoint control 1 -> 15
struct usb_host_dpram_ep_ctrl {
io_rw_32 ctrl;
io_rw_32 spare;
} int_ep_ctrl[USB_HOST_INTERRUPT_ENDPOINTS];
io_rw_32 epx_buf_ctrl;
io_rw_32 _spare0;
// Interrupt endpoint buffer control
struct usb_host_dpram_ep_buf_ctrl {
io_rw_32 ctrl;
io_rw_32 spare;
} int_ep_buffer_ctrl[USB_HOST_INTERRUPT_ENDPOINTS];
io_rw_32 epx_ctrl;
uint8_t _spare1[124];
// Should start at 0x180
uint8_t epx_data[USB_DPRAM_MAX - 0x180];
} usb_host_dpram_t;
static_assert(sizeof(usb_host_dpram_t) == USB_DPRAM_MAX, "");
static_assert(offsetof(usb_host_dpram_t, epx_data) == 0x180, "");
#define usb_dpram ((usb_device_dpram_t *)USBCTRL_DPRAM_BASE)
#define usbh_dpram ((usb_host_dpram_t *)USBCTRL_DPRAM_BASE)
static_assert( USB_HOST_INTERRUPT_ENDPOINTS == 15, "");
#endif // _HARDWARE_STRUCTS_USB_DPRAM_H

View File

@@ -0,0 +1,59 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_WATCHDOG_H
#define _HARDWARE_STRUCTS_WATCHDOG_H
/**
* \file rp2350/watchdog.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/watchdog.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_watchdog
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/watchdog.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(WATCHDOG_CTRL_OFFSET) // WATCHDOG_CTRL
// Watchdog control +
// 0x80000000 [31] TRIGGER (0) Trigger a watchdog reset
// 0x40000000 [30] ENABLE (0) When not enabled the watchdog timer is paused
// 0x04000000 [26] PAUSE_DBG1 (1) Pause the watchdog timer when processor 1 is in debug mode
// 0x02000000 [25] PAUSE_DBG0 (1) Pause the watchdog timer when processor 0 is in debug mode
// 0x01000000 [24] PAUSE_JTAG (1) Pause the watchdog timer when JTAG is accessing the bus fabric
// 0x00ffffff [23:0] TIME (0x000000) Indicates the time in usec before a watchdog reset will...
io_rw_32 ctrl;
_REG_(WATCHDOG_LOAD_OFFSET) // WATCHDOG_LOAD
// Load the watchdog timer
// 0x00ffffff [23:0] LOAD (0x000000)
io_wo_32 load;
_REG_(WATCHDOG_REASON_OFFSET) // WATCHDOG_REASON
// Logs the reason for the last reset
// 0x00000002 [1] FORCE (0)
// 0x00000001 [0] TIMER (0)
io_ro_32 reason;
// (Description copied from array index 0 register WATCHDOG_SCRATCH0 applies similarly to other array indexes)
_REG_(WATCHDOG_SCRATCH0_OFFSET) // WATCHDOG_SCRATCH0
// Scratch register
// 0xffffffff [31:0] SCRATCH0 (0x00000000)
io_rw_32 scratch[8];
} watchdog_hw_t;
#define watchdog_hw ((watchdog_hw_t *)WATCHDOG_BASE)
static_assert(sizeof (watchdog_hw_t) == 0x002c, "");
#endif // _HARDWARE_STRUCTS_WATCHDOG_H

View File

@@ -0,0 +1,79 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_XIP_H
#define _HARDWARE_STRUCTS_XIP_H
/**
* \file rp2350/xip.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/xip.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_xip
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/xip.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(XIP_CTRL_OFFSET) // XIP_CTRL
// Cache control register
// 0x00000800 [11] WRITABLE_M1 (0) If 1, enable writes to XIP memory window 1 (addresses...
// 0x00000400 [10] WRITABLE_M0 (0) If 1, enable writes to XIP memory window 0 (addresses...
// 0x00000200 [9] SPLIT_WAYS (0) When 1, route all cached+Secure accesses to way 0 of the...
// 0x00000100 [8] MAINT_NONSEC (0) When 0, Non-secure accesses to the cache maintenance...
// 0x00000080 [7] NO_UNTRANSLATED_NONSEC (1) When 1, Non-secure accesses to the uncached,...
// 0x00000040 [6] NO_UNTRANSLATED_SEC (0) When 1, Secure accesses to the uncached, untranslated...
// 0x00000020 [5] NO_UNCACHED_NONSEC (0) When 1, Non-secure accesses to the uncached window...
// 0x00000010 [4] NO_UNCACHED_SEC (0) When 1, Secure accesses to the uncached window...
// 0x00000008 [3] POWER_DOWN (0) When 1, the cache memories are powered down
// 0x00000002 [1] EN_NONSECURE (1) When 1, enable the cache for Non-secure accesses
// 0x00000001 [0] EN_SECURE (1) When 1, enable the cache for Secure accesses
io_rw_32 ctrl;
uint32_t _pad0;
_REG_(XIP_STAT_OFFSET) // XIP_STAT
// 0x00000004 [2] FIFO_FULL (0) When 1, indicates the XIP streaming FIFO is completely full
// 0x00000002 [1] FIFO_EMPTY (1) When 1, indicates the XIP streaming FIFO is completely empty
io_ro_32 stat;
_REG_(XIP_CTR_HIT_OFFSET) // XIP_CTR_HIT
// Cache Hit counter
// 0xffffffff [31:0] CTR_HIT (0x00000000) A 32 bit saturating counter that increments upon each...
io_rw_32 ctr_hit;
_REG_(XIP_CTR_ACC_OFFSET) // XIP_CTR_ACC
// Cache Access counter
// 0xffffffff [31:0] CTR_ACC (0x00000000) A 32 bit saturating counter that increments upon each...
io_rw_32 ctr_acc;
_REG_(XIP_STREAM_ADDR_OFFSET) // XIP_STREAM_ADDR
// FIFO stream address
// 0xfffffffc [31:2] STREAM_ADDR (0x00000000) The address of the next word to be streamed from flash...
io_rw_32 stream_addr;
_REG_(XIP_STREAM_CTR_OFFSET) // XIP_STREAM_CTR
// FIFO stream control
// 0x003fffff [21:0] STREAM_CTR (0x000000) Write a nonzero value to start a streaming read
io_rw_32 stream_ctr;
_REG_(XIP_STREAM_FIFO_OFFSET) // XIP_STREAM_FIFO
// FIFO stream data
// 0xffffffff [31:0] STREAM_FIFO (0x00000000) Streamed data is buffered here, for retrieval by the system DMA
io_ro_32 stream_fifo;
} xip_ctrl_hw_t;
#define xip_ctrl_hw ((xip_ctrl_hw_t *)XIP_CTRL_BASE)
static_assert(sizeof (xip_ctrl_hw_t) == 0x0020, "");
#endif // _HARDWARE_STRUCTS_XIP_H

View File

@@ -0,0 +1,51 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_XIP_AUX_H
#define _HARDWARE_STRUCTS_XIP_AUX_H
/**
* \file rp2350/xip_aux.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/xip_aux.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_xip_aux
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/xip_aux.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
typedef struct {
_REG_(XIP_AUX_STREAM_OFFSET) // XIP_AUX_STREAM
// Read the XIP stream FIFO (fast bus access to XIP_CTRL_STREAM_FIFO)
// 0xffffffff [31:0] STREAM (0x00000000)
io_ro_32 stream;
_REG_(XIP_AUX_QMI_DIRECT_TX_OFFSET) // XIP_AUX_QMI_DIRECT_TX
// Write to the QMI direct-mode TX FIFO (fast bus access to QMI_DIRECT_TX)
// 0x00100000 [20] NOPUSH (0) Inhibit the RX FIFO push that would correspond to this...
// 0x00080000 [19] OE (0) Output enable (active-high)
// 0x00040000 [18] DWIDTH (0) Data width
// 0x00030000 [17:16] IWIDTH (0x0) Configure whether this FIFO record is transferred with...
// 0x0000ffff [15:0] DATA (0x0000) Data pushed here will be clocked out falling edges of...
io_wo_32 qmi_direct_tx;
_REG_(XIP_AUX_QMI_DIRECT_RX_OFFSET) // XIP_AUX_QMI_DIRECT_RX
// Read from the QMI direct-mode RX FIFO (fast bus access to QMI_DIRECT_RX)
// 0x0000ffff [15:0] QMI_DIRECT_RX (0x0000) With each byte clocked out on the serial interface, one...
io_ro_32 qmi_direct_rx;
} xip_aux_hw_t;
#define xip_aux_hw ((xip_aux_hw_t *)XIP_AUX_BASE)
static_assert(sizeof (xip_aux_hw_t) == 0x000c, "");
#endif // _HARDWARE_STRUCTS_XIP_AUX_H

View File

@@ -0,0 +1,11 @@
/**
* Copyright (c) 2024 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
// Support old header for compatibility (and if included, support old variable name)
#include "hardware/structs/xip.h"
#define XIP_STAT_FIFO_FULL XIP_STAT_FIFO_FULL_BITS
#define XIP_STAT_FIFO_EMPTY XIP_STAT_FIFO_EMPTY_BITS
#define XIP_STAT_FLUSH_RDY XIP_STAT_FLUSH_READY_BITS

View File

@@ -0,0 +1,64 @@
// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _HARDWARE_STRUCTS_XOSC_H
#define _HARDWARE_STRUCTS_XOSC_H
/**
* \file rp2350/xosc.h
*/
#include "hardware/address_mapped.h"
#include "hardware/regs/xosc.h"
// Reference to datasheet: https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf#tab-registerlist_xosc
//
// The _REG_ macro is intended to help make the register navigable in your IDE (for example, using the "Go to Definition" feature)
// _REG_(x) will link to the corresponding register in hardware/regs/xosc.h.
//
// Bit-field descriptions are of the form:
// BITMASK [BITRANGE] FIELDNAME (RESETVALUE) DESCRIPTION
/// \tag::xosc_hw[]
typedef struct {
_REG_(XOSC_CTRL_OFFSET) // XOSC_CTRL
// Crystal Oscillator Control
// 0x00fff000 [23:12] ENABLE (-) On power-up this field is initialised to DISABLE and the...
// 0x00000fff [11:0] FREQ_RANGE (-) The 12-bit code is intended to give some protection...
io_rw_32 ctrl;
_REG_(XOSC_STATUS_OFFSET) // XOSC_STATUS
// Crystal Oscillator Status
// 0x80000000 [31] STABLE (0) Oscillator is running and stable
// 0x01000000 [24] BADWRITE (0) An invalid value has been written to CTRL_ENABLE or...
// 0x00001000 [12] ENABLED (-) Oscillator is enabled but not necessarily running and...
// 0x00000003 [1:0] FREQ_RANGE (-) The current frequency range setting
io_rw_32 status;
_REG_(XOSC_DORMANT_OFFSET) // XOSC_DORMANT
// Crystal Oscillator pause control
// 0xffffffff [31:0] DORMANT (-) This is used to save power by pausing the XOSC +
io_rw_32 dormant;
_REG_(XOSC_STARTUP_OFFSET) // XOSC_STARTUP
// Controls the startup delay
// 0x00100000 [20] X4 (-) Multiplies the startup_delay by 4, just in case
// 0x00003fff [13:0] DELAY (-) in multiples of 256*xtal_period
io_rw_32 startup;
_REG_(XOSC_COUNT_OFFSET) // XOSC_COUNT
// A down counter running at the XOSC frequency which counts to zero and stops.
// 0x0000ffff [15:0] COUNT (0x0000)
io_rw_32 count;
} xosc_hw_t;
/// \end::xosc_hw[]
#define xosc_hw ((xosc_hw_t *)XOSC_BASE)
static_assert(sizeof (xosc_hw_t) == 0x0014, "");
#endif // _HARDWARE_STRUCTS_XOSC_H