extruder: Create a new class and python file to track the printer extruder
Create a new python file (extruder.py) to control the extruder heater and stepper motors. This separates the extruder control logic from the cartesian robot code - making it easier to customize both the kinematic control of the robot as well as the extruder. Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
62
klippy/extruder.py
Normal file
62
klippy/extruder.py
Normal file
@@ -0,0 +1,62 @@
|
||||
# Code for handling printer nozzle extruders
|
||||
#
|
||||
# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import logging
|
||||
import stepper, heater
|
||||
|
||||
class PrinterExtruder:
|
||||
def __init__(self, printer, config):
|
||||
cfg = config.getsection('extruder')
|
||||
self.heater = heater.PrinterHeater(printer, cfg)
|
||||
self.stepper = stepper.PrinterStepper(printer, cfg)
|
||||
self.stepper_pos = 0
|
||||
def build_config(self):
|
||||
self.heater.build_config()
|
||||
self.stepper.build_config()
|
||||
def get_max_speed(self):
|
||||
return self.stepper.max_velocity, self.stepper.max_accel
|
||||
def motor_off(self, move_time):
|
||||
self.stepper.motor_enable(move_time, 0)
|
||||
def move(self, move_time, move):
|
||||
inv_accel = 1. / move.accel
|
||||
new_step_pos = int(move.pos[3]*self.stepper.inv_step_dist + 0.5)
|
||||
steps = new_step_pos - self.stepper_pos
|
||||
if not steps:
|
||||
return
|
||||
self.stepper_pos = new_step_pos
|
||||
sdir = 0
|
||||
if steps < 0:
|
||||
sdir = 1
|
||||
steps = -steps
|
||||
clock_offset, clock_freq, so = self.stepper.prep_move(sdir, move_time)
|
||||
|
||||
step_dist = move.move_d / steps
|
||||
step_offset = 0.5
|
||||
|
||||
# Acceleration steps
|
||||
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
|
||||
accel_clock_offset = move.start_v * inv_accel * clock_freq
|
||||
accel_sqrt_offset = accel_clock_offset**2
|
||||
accel_multiplier = 2.0 * step_dist * inv_accel * clock_freq**2
|
||||
accel_steps = move.accel_r * steps
|
||||
step_offset = so.step_sqrt(
|
||||
accel_steps, step_offset, clock_offset - accel_clock_offset
|
||||
, accel_sqrt_offset, accel_multiplier)
|
||||
clock_offset += move.accel_t * clock_freq
|
||||
# Cruising steps
|
||||
#t = pos/cruise_v
|
||||
cruise_multiplier = step_dist * clock_freq / move.cruise_v
|
||||
cruise_steps = move.cruise_r * steps
|
||||
step_offset = so.step_factor(
|
||||
cruise_steps, step_offset, clock_offset, cruise_multiplier)
|
||||
clock_offset += move.cruise_t * clock_freq
|
||||
# Deceleration steps
|
||||
#t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
|
||||
decel_clock_offset = move.cruise_v * inv_accel * clock_freq
|
||||
decel_sqrt_offset = decel_clock_offset**2
|
||||
decel_steps = move.decel_r * steps
|
||||
so.step_sqrt(
|
||||
decel_steps, step_offset, clock_offset + decel_clock_offset
|
||||
, decel_sqrt_offset, -accel_multiplier)
|
||||
Reference in New Issue
Block a user