toolhead: Move kinematic modules to new kinematics/ directory

Move extruder.py, cartesian.py, corexy.py, and delta.py to a new
kinematics/ sub-directory.  This is intended to make adding new
kinematics a little easier.

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor
2018-07-12 22:15:45 -04:00
parent 7d897d84d7
commit 8faab46ed2
9 changed files with 37 additions and 17 deletions

View File

@@ -0,0 +1,5 @@
# Package definition for the kinematics directory
#
# Copyright (C) 2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.

View File

@@ -0,0 +1,173 @@
# Code for handling the kinematics of cartesian robots
#
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
import stepper, homing, chelper
class CartKinematics:
def __init__(self, toolhead, config):
self.printer = config.get_printer()
self.rails = [stepper.LookupMultiRail(config.getsection('stepper_' + n))
for n in ['x', 'y', 'z']]
max_velocity, max_accel = toolhead.get_max_velocity()
self.max_z_velocity = config.getfloat(
'max_z_velocity', max_velocity, above=0., maxval=max_velocity)
self.max_z_accel = config.getfloat(
'max_z_accel', max_accel, above=0., maxval=max_accel)
self.need_motor_enable = True
self.limits = [(1.0, -1.0)] * 3
# Setup iterative solver
ffi_main, ffi_lib = chelper.get_ffi()
self.cmove = ffi_main.gc(ffi_lib.move_alloc(), ffi_lib.free)
self.move_fill = ffi_lib.move_fill
for axis, rail in zip('xyz', self.rails):
rail.setup_cartesian_itersolve(axis)
# Setup stepper max halt velocity
max_halt_velocity = toolhead.get_max_axis_halt()
self.rails[0].set_max_jerk(max_halt_velocity, max_accel)
self.rails[1].set_max_jerk(max_halt_velocity, max_accel)
self.rails[2].set_max_jerk(
min(max_halt_velocity, self.max_z_velocity), max_accel)
# Check for dual carriage support
self.dual_carriage_axis = None
self.dual_carriage_rails = []
if config.has_section('dual_carriage'):
dc_config = config.getsection('dual_carriage')
dc_axis = dc_config.getchoice('axis', {'x': 'x', 'y': 'y'})
self.dual_carriage_axis = {'x': 0, 'y': 1}[dc_axis]
dc_rail = stepper.LookupMultiRail(dc_config)
dc_rail.setup_cartesian_itersolve(dc_axis)
dc_rail.set_max_jerk(max_halt_velocity, max_accel)
self.dual_carriage_rails = [
self.rails[self.dual_carriage_axis], dc_rail]
self.printer.lookup_object('gcode').register_command(
'SET_DUAL_CARRIAGE', self.cmd_SET_DUAL_CARRIAGE,
desc=self.cmd_SET_DUAL_CARRIAGE_help)
def get_rails(self, flags=""):
if flags == "Z":
return [self.rails[2]]
return list(self.rails)
def calc_position(self):
return [rail.get_commanded_position() for rail in self.rails]
def set_position(self, newpos, homing_axes):
for i, rail in enumerate(self.rails):
rail.set_position(newpos)
if i in homing_axes:
self.limits[i] = rail.get_range()
def _home_axis(self, homing_state, axis, rail):
# Determine moves
position_min, position_max = rail.get_range()
hi = rail.get_homing_info()
if hi.positive_dir:
pos = hi.position_endstop - 1.5*(hi.position_endstop - position_min)
rpos = hi.position_endstop - hi.retract_dist
r2pos = rpos - hi.retract_dist
else:
pos = hi.position_endstop + 1.5*(position_max - hi.position_endstop)
rpos = hi.position_endstop + hi.retract_dist
r2pos = rpos + hi.retract_dist
# Initial homing
homing_speed = hi.speed
if axis == 2:
homing_speed = min(homing_speed, self.max_z_velocity)
homepos = [None, None, None, None]
homepos[axis] = hi.position_endstop
coord = [None, None, None, None]
coord[axis] = pos
homing_state.home(coord, homepos, rail.get_endstops(), homing_speed)
# Retract
coord[axis] = rpos
homing_state.retract(coord, homing_speed)
# Home again
coord[axis] = r2pos
homing_state.home(coord, homepos, rail.get_endstops(),
homing_speed/2.0, second_home=True)
# Set final homed position
coord[axis] = hi.position_endstop + rail.get_homed_offset()
homing_state.set_homed_position(coord)
def home(self, homing_state):
# Each axis is homed independently and in order
for axis in homing_state.get_axes():
if axis == self.dual_carriage_axis:
dc1, dc2 = self.dual_carriage_rails
altc = self.rails[axis] == dc2
self._activate_carriage(0)
self._home_axis(homing_state, axis, dc1)
self._activate_carriage(1)
self._home_axis(homing_state, axis, dc2)
self._activate_carriage(altc)
else:
self._home_axis(homing_state, axis, self.rails[axis])
def motor_off(self, print_time):
self.limits = [(1.0, -1.0)] * 3
for rail in self.rails:
rail.motor_enable(print_time, 0)
for rail in self.dual_carriage_rails:
rail.motor_enable(print_time, 0)
self.need_motor_enable = True
def _check_motor_enable(self, print_time, move):
need_motor_enable = False
for i, rail in enumerate(self.rails):
if move.axes_d[i]:
rail.motor_enable(print_time, 1)
need_motor_enable |= not rail.is_motor_enabled()
self.need_motor_enable = need_motor_enable
def _check_endstops(self, move):
end_pos = move.end_pos
for i in (0, 1, 2):
if (move.axes_d[i]
and (end_pos[i] < self.limits[i][0]
or end_pos[i] > self.limits[i][1])):
if self.limits[i][0] > self.limits[i][1]:
raise homing.EndstopMoveError(
end_pos, "Must home axis first")
raise homing.EndstopMoveError(end_pos)
def check_move(self, move):
limits = self.limits
xpos, ypos = move.end_pos[:2]
if (xpos < limits[0][0] or xpos > limits[0][1]
or ypos < limits[1][0] or ypos > limits[1][1]):
self._check_endstops(move)
if not move.axes_d[2]:
# Normal XY move - use defaults
return
# Move with Z - update velocity and accel for slower Z axis
self._check_endstops(move)
z_ratio = move.move_d / abs(move.axes_d[2])
move.limit_speed(
self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio)
def move(self, print_time, move):
if self.need_motor_enable:
self._check_motor_enable(print_time, move)
self.move_fill(
self.cmove, print_time,
move.accel_t, move.cruise_t, move.decel_t,
move.start_pos[0], move.start_pos[1], move.start_pos[2],
move.axes_d[0], move.axes_d[1], move.axes_d[2],
move.start_v, move.cruise_v, move.accel)
for i, rail in enumerate(self.rails):
if move.axes_d[i]:
rail.step_itersolve(self.cmove)
# Dual carriage support
def _activate_carriage(self, carriage):
toolhead = self.printer.lookup_object('toolhead')
toolhead.get_last_move_time()
dc_rail = self.dual_carriage_rails[carriage]
dc_axis = self.dual_carriage_axis
self.rails[dc_axis] = dc_rail
extruder_pos = toolhead.get_position()[3]
toolhead.set_position(self.calc_position() + [extruder_pos])
if self.limits[dc_axis][0] <= self.limits[dc_axis][1]:
self.limits[dc_axis] = dc_rail.get_range()
self.need_motor_enable = True
cmd_SET_DUAL_CARRIAGE_help = "Set which carriage is active"
def cmd_SET_DUAL_CARRIAGE(self, params):
gcode = self.printer.lookup_object('gcode')
carriage = gcode.get_int('CARRIAGE', params, minval=0, maxval=1)
self._activate_carriage(carriage)
gcode.reset_last_position()
def load_kinematics(toolhead, config):
return CartKinematics(toolhead, config)

146
klippy/kinematics/corexy.py Normal file
View File

@@ -0,0 +1,146 @@
# Code for handling the kinematics of corexy robots
#
# Copyright (C) 2017-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, math
import stepper, homing, chelper
class CoreXYKinematics:
def __init__(self, toolhead, config):
self.rails = [ stepper.PrinterRail(config.getsection('stepper_x')),
stepper.PrinterRail(config.getsection('stepper_y')),
stepper.LookupMultiRail(config.getsection('stepper_z')) ]
self.rails[0].add_to_endstop(self.rails[1].get_endstops()[0][0])
self.rails[1].add_to_endstop(self.rails[0].get_endstops()[0][0])
max_velocity, max_accel = toolhead.get_max_velocity()
self.max_z_velocity = config.getfloat(
'max_z_velocity', max_velocity, above=0., maxval=max_velocity)
self.max_z_accel = config.getfloat(
'max_z_accel', max_accel, above=0., maxval=max_accel)
self.need_motor_enable = True
self.limits = [(1.0, -1.0)] * 3
# Setup iterative solver
ffi_main, ffi_lib = chelper.get_ffi()
self.cmove = ffi_main.gc(ffi_lib.move_alloc(), ffi_lib.free)
self.move_fill = ffi_lib.move_fill
self.rails[0].setup_itersolve(ffi_main.gc(
ffi_lib.corexy_stepper_alloc('+'), ffi_lib.free))
self.rails[1].setup_itersolve(ffi_main.gc(
ffi_lib.corexy_stepper_alloc('-'), ffi_lib.free))
self.rails[2].setup_cartesian_itersolve('z')
# Setup stepper max halt velocity
max_halt_velocity = toolhead.get_max_axis_halt()
max_xy_halt_velocity = max_halt_velocity * math.sqrt(2.)
self.rails[0].set_max_jerk(max_xy_halt_velocity, max_accel)
self.rails[1].set_max_jerk(max_xy_halt_velocity, max_accel)
self.rails[2].set_max_jerk(
min(max_halt_velocity, self.max_z_velocity), self.max_z_accel)
def get_rails(self, flags=""):
if flags == "Z":
return [self.rails[2]]
return list(self.rails)
def calc_position(self):
pos = [rail.get_commanded_position() for rail in self.rails]
return [0.5 * (pos[0] + pos[1]), 0.5 * (pos[0] - pos[1]), pos[2]]
def set_position(self, newpos, homing_axes):
for i, rail in enumerate(self.rails):
rail.set_position(newpos)
if i in homing_axes:
self.limits[i] = rail.get_range()
def home(self, homing_state):
# Each axis is homed independently and in order
for axis in homing_state.get_axes():
rail = self.rails[axis]
# Determine moves
position_min, position_max = rail.get_range()
hi = rail.get_homing_info()
if hi.positive_dir:
pos = hi.position_endstop - 1.5*(
hi.position_endstop - position_min)
rpos = hi.position_endstop - hi.retract_dist
r2pos = rpos - hi.retract_dist
else:
pos = hi.position_endstop + 1.5*(
position_max - hi.position_endstop)
rpos = hi.position_endstop + hi.retract_dist
r2pos = rpos + hi.retract_dist
# Initial homing
homing_speed = hi.speed
if axis == 2:
homing_speed = min(homing_speed, self.max_z_velocity)
homepos = [None, None, None, None]
homepos[axis] = hi.position_endstop
coord = [None, None, None, None]
coord[axis] = pos
homing_state.home(coord, homepos, rail.get_endstops(), homing_speed)
# Retract
coord[axis] = rpos
homing_state.retract(coord, homing_speed)
# Home again
coord[axis] = r2pos
homing_state.home(coord, homepos, rail.get_endstops(),
homing_speed/2.0, second_home=True)
if axis == 2:
# Support endstop phase detection on Z axis
coord[axis] = hi.position_endstop + rail.get_homed_offset()
homing_state.set_homed_position(coord)
def motor_off(self, print_time):
self.limits = [(1.0, -1.0)] * 3
for rail in self.rails:
rail.motor_enable(print_time, 0)
self.need_motor_enable = True
def _check_motor_enable(self, print_time, move):
if move.axes_d[0] or move.axes_d[1]:
self.rails[0].motor_enable(print_time, 1)
self.rails[1].motor_enable(print_time, 1)
if move.axes_d[2]:
self.rails[2].motor_enable(print_time, 1)
need_motor_enable = False
for rail in self.rails:
need_motor_enable |= not rail.is_motor_enabled()
self.need_motor_enable = need_motor_enable
def _check_endstops(self, move):
end_pos = move.end_pos
for i in (0, 1, 2):
if (move.axes_d[i]
and (end_pos[i] < self.limits[i][0]
or end_pos[i] > self.limits[i][1])):
if self.limits[i][0] > self.limits[i][1]:
raise homing.EndstopMoveError(
end_pos, "Must home axis first")
raise homing.EndstopMoveError(end_pos)
def check_move(self, move):
limits = self.limits
xpos, ypos = move.end_pos[:2]
if (xpos < limits[0][0] or xpos > limits[0][1]
or ypos < limits[1][0] or ypos > limits[1][1]):
self._check_endstops(move)
if not move.axes_d[2]:
# Normal XY move - use defaults
return
# Move with Z - update velocity and accel for slower Z axis
self._check_endstops(move)
z_ratio = move.move_d / abs(move.axes_d[2])
move.limit_speed(
self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio)
def move(self, print_time, move):
if self.need_motor_enable:
self._check_motor_enable(print_time, move)
axes_d = move.axes_d
cmove = self.cmove
self.move_fill(
cmove, print_time,
move.accel_t, move.cruise_t, move.decel_t,
move.start_pos[0], move.start_pos[1], move.start_pos[2],
axes_d[0], axes_d[1], axes_d[2],
move.start_v, move.cruise_v, move.accel)
rail_x, rail_y, rail_z = self.rails
if axes_d[0] or axes_d[1]:
rail_x.step_itersolve(cmove)
rail_y.step_itersolve(cmove)
if axes_d[2]:
rail_z.step_itersolve(cmove)
def load_kinematics(toolhead, config):
return CoreXYKinematics(toolhead, config)

203
klippy/kinematics/delta.py Normal file
View File

@@ -0,0 +1,203 @@
# Code for handling the kinematics of linear delta robots
#
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
import stepper, homing, chelper, mathutil
# Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO
SLOW_RATIO = 3.
class DeltaKinematics:
def __init__(self, toolhead, config):
# Setup tower rails
stepper_configs = [config.getsection('stepper_' + n)
for n in ['a', 'b', 'c']]
rail_a = stepper.PrinterRail(
stepper_configs[0], need_position_minmax = False)
a_endstop = rail_a.get_homing_info().position_endstop
rail_b = stepper.PrinterRail(
stepper_configs[1], need_position_minmax = False,
default_position_endstop=a_endstop)
rail_c = stepper.PrinterRail(
stepper_configs[2], need_position_minmax = False,
default_position_endstop=a_endstop)
self.rails = [rail_a, rail_b, rail_c]
# Read radius and arm lengths
self.radius = radius = config.getfloat('delta_radius', above=0.)
arm_length_a = stepper_configs[0].getfloat('arm_length', above=radius)
self.arm_lengths = arm_lengths = [
sconfig.getfloat('arm_length', arm_length_a, above=radius)
for sconfig in stepper_configs]
self.arm2 = [arm**2 for arm in arm_lengths]
self.endstops = [(rail.get_homing_info().position_endstop
+ math.sqrt(arm2 - radius**2))
for rail, arm2 in zip(self.rails, self.arm2)]
# Setup boundary checks
self.need_motor_enable = self.need_home = True
self.limit_xy2 = -1.
self.max_z = min([rail.get_homing_info().position_endstop
for rail in self.rails])
self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z)
self.limit_z = min([ep - arm
for ep, arm in zip(self.endstops, arm_lengths)])
logging.info(
"Delta max build height %.2fmm (radius tapered above %.2fmm)" % (
self.max_z, self.limit_z))
# Setup stepper max halt velocity
self.max_velocity, self.max_accel = toolhead.get_max_velocity()
self.max_z_velocity = config.getfloat(
'max_z_velocity', self.max_velocity,
above=0., maxval=self.max_velocity)
max_halt_velocity = toolhead.get_max_axis_halt()
for rail in self.rails:
rail.set_max_jerk(max_halt_velocity, self.max_accel)
# Determine tower locations in cartesian space
self.angles = [sconfig.getfloat('angle', angle)
for sconfig, angle in zip(stepper_configs,
[210., 330., 90.])]
self.towers = [(math.cos(math.radians(angle)) * radius,
math.sin(math.radians(angle)) * radius)
for angle in self.angles]
# Setup iterative solver
ffi_main, ffi_lib = chelper.get_ffi()
self.cmove = ffi_main.gc(ffi_lib.move_alloc(), ffi_lib.free)
self.move_fill = ffi_lib.move_fill
for r, a, t in zip(self.rails, self.arm2, self.towers):
sk = ffi_main.gc(ffi_lib.delta_stepper_alloc(a, t[0], t[1]),
ffi_lib.free)
r.setup_itersolve(sk)
# Find the point where an XY move could result in excessive
# tower movement
half_min_step_dist = min([r.get_steppers()[0].get_step_dist()
for r in self.rails]) * .5
min_arm_length = min(arm_lengths)
def ratio_to_dist(ratio):
return (ratio * math.sqrt(min_arm_length**2 / (ratio**2 + 1.)
- half_min_step_dist**2)
+ half_min_step_dist)
self.slow_xy2 = (ratio_to_dist(SLOW_RATIO) - radius)**2
self.very_slow_xy2 = (ratio_to_dist(2. * SLOW_RATIO) - radius)**2
self.max_xy2 = min(radius, min_arm_length - radius,
ratio_to_dist(4. * SLOW_RATIO) - radius)**2
logging.info(
"Delta max build radius %.2fmm (moves slowed past %.2fmm and %.2fmm)"
% (math.sqrt(self.max_xy2), math.sqrt(self.slow_xy2),
math.sqrt(self.very_slow_xy2)))
self.set_position([0., 0., 0.], ())
def get_rails(self, flags=""):
return list(self.rails)
def _actuator_to_cartesian(self, spos):
sphere_coords = [(t[0], t[1], sp) for t, sp in zip(self.towers, spos)]
return mathutil.trilateration(sphere_coords, self.arm2)
def calc_position(self):
spos = [rail.get_commanded_position() for rail in self.rails]
return self._actuator_to_cartesian(spos)
def set_position(self, newpos, homing_axes):
for rail in self.rails:
rail.set_position(newpos)
self.limit_xy2 = -1.
if tuple(homing_axes) == (0, 1, 2):
self.need_home = False
def home(self, homing_state):
# All axes are homed simultaneously
homing_state.set_axes([0, 1, 2])
endstops = [es for rail in self.rails for es in rail.get_endstops()]
# Initial homing - assume homing speed same for all steppers
hi = self.rails[0].get_homing_info()
homing_speed = min(hi.speed, self.max_z_velocity)
homepos = [0., 0., self.max_z, None]
coord = list(homepos)
coord[2] = -1.5 * math.sqrt(max(self.arm2)-self.max_xy2)
homing_state.home(coord, homepos, endstops, homing_speed)
# Retract
coord[2] = homepos[2] - hi.retract_dist
homing_state.retract(coord, homing_speed)
# Home again
coord[2] -= hi.retract_dist
homing_state.home(coord, homepos, endstops,
homing_speed/2.0, second_home=True)
# Set final homed position
spos = [ep + rail.get_homed_offset()
for ep, rail in zip(self.endstops, self.rails)]
homing_state.set_homed_position(self._actuator_to_cartesian(spos))
def motor_off(self, print_time):
self.limit_xy2 = -1.
for rail in self.rails:
rail.motor_enable(print_time, 0)
self.need_motor_enable = self.need_home = True
def _check_motor_enable(self, print_time):
for rail in self.rails:
rail.motor_enable(print_time, 1)
self.need_motor_enable = False
def check_move(self, move):
end_pos = move.end_pos
xy2 = end_pos[0]**2 + end_pos[1]**2
if xy2 <= self.limit_xy2 and not move.axes_d[2]:
# Normal XY move
return
if self.need_home:
raise homing.EndstopMoveError(end_pos, "Must home first")
limit_xy2 = self.max_xy2
if end_pos[2] > self.limit_z:
limit_xy2 = min(limit_xy2, (self.max_z - end_pos[2])**2)
if xy2 > limit_xy2 or end_pos[2] < self.min_z or end_pos[2] > self.max_z:
raise homing.EndstopMoveError(end_pos)
if move.axes_d[2]:
move.limit_speed(self.max_z_velocity, move.accel)
limit_xy2 = -1.
# Limit the speed/accel of this move if is is at the extreme
# end of the build envelope
extreme_xy2 = max(xy2, move.start_pos[0]**2 + move.start_pos[1]**2)
if extreme_xy2 > self.slow_xy2:
r = 0.5
if extreme_xy2 > self.very_slow_xy2:
r = 0.25
max_velocity = self.max_velocity
if move.axes_d[2]:
max_velocity = self.max_z_velocity
move.limit_speed(max_velocity * r, self.max_accel * r)
limit_xy2 = -1.
self.limit_xy2 = min(limit_xy2, self.slow_xy2)
def move(self, print_time, move):
if self.need_motor_enable:
self._check_motor_enable(print_time)
self.move_fill(
self.cmove, print_time,
move.accel_t, move.cruise_t, move.decel_t,
move.start_pos[0], move.start_pos[1], move.start_pos[2],
move.axes_d[0], move.axes_d[1], move.axes_d[2],
move.start_v, move.cruise_v, move.accel)
for rail in self.rails:
rail.step_itersolve(self.cmove)
# Helper functions for DELTA_CALIBRATE script
def get_stable_position(self):
steppers = [rail.get_steppers()[0] for rail in self.rails]
return [int((ep - s.get_commanded_position()) / s.get_step_dist() + .5)
* s.get_step_dist()
for ep, s in zip(self.endstops, steppers)]
def get_calibrate_params(self):
return {
'endstop_a': self.rails[0].get_homing_info().position_endstop,
'endstop_b': self.rails[1].get_homing_info().position_endstop,
'endstop_c': self.rails[2].get_homing_info().position_endstop,
'angle_a': self.angles[0], 'angle_b': self.angles[1],
'angle_c': self.angles[2], 'radius': self.radius,
'arm_a': self.arm_lengths[0], 'arm_b': self.arm_lengths[1],
'arm_c': self.arm_lengths[2] }
def get_position_from_stable(spos, params):
angles = [params['angle_a'], params['angle_b'], params['angle_c']]
radius = params['radius']
radius2 = radius**2
towers = [(math.cos(angle) * radius, math.sin(angle) * radius)
for angle in map(math.radians, angles)]
arm2 = [a**2 for a in [params['arm_a'], params['arm_b'], params['arm_c']]]
endstops = [params['endstop_a'], params['endstop_b'], params['endstop_c']]
sphere_coords = [(t[0], t[1], es + math.sqrt(a2 - radius2) - p)
for t, es, a2, p in zip(towers, endstops, arm2, spos)]
return mathutil.trilateration(sphere_coords, arm2)
def load_kinematics(toolhead, config):
return DeltaKinematics(toolhead, config)

View File

@@ -0,0 +1,253 @@
# Code for handling printer nozzle extruders
#
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
import stepper, homing, chelper
EXTRUDE_DIFF_IGNORE = 1.02
class PrinterExtruder:
def __init__(self, config):
self.printer = config.get_printer()
self.name = config.get_name()
shared_heater = config.get('shared_heater', None)
pheater = self.printer.lookup_object('heater')
if shared_heater is None:
self.heater = pheater.setup_heater(config)
else:
self.heater = pheater.lookup_heater(shared_heater)
self.stepper = stepper.PrinterStepper(config)
self.nozzle_diameter = config.getfloat('nozzle_diameter', above=0.)
filament_diameter = config.getfloat(
'filament_diameter', minval=self.nozzle_diameter)
self.filament_area = math.pi * (filament_diameter * .5)**2
max_cross_section = config.getfloat(
'max_extrude_cross_section', 4. * self.nozzle_diameter**2
, above=0.)
self.max_extrude_ratio = max_cross_section / self.filament_area
logging.info("Extruder max_extrude_ratio=%.6f", self.max_extrude_ratio)
toolhead = self.printer.lookup_object('toolhead')
max_velocity, max_accel = toolhead.get_max_velocity()
self.max_e_velocity = config.getfloat(
'max_extrude_only_velocity', max_velocity * self.max_extrude_ratio
, above=0.)
self.max_e_accel = config.getfloat(
'max_extrude_only_accel', max_accel * self.max_extrude_ratio
, above=0.)
self.stepper.set_max_jerk(9999999.9, 9999999.9)
self.max_e_dist = config.getfloat(
'max_extrude_only_distance', 50., minval=0.)
self.activate_gcode = config.get('activate_gcode', '')
self.deactivate_gcode = config.get('deactivate_gcode', '')
self.pressure_advance = config.getfloat(
'pressure_advance', 0., minval=0.)
self.pressure_advance_lookahead_time = config.getfloat(
'pressure_advance_lookahead_time', 0.010, minval=0.)
self.need_motor_enable = True
self.extrude_pos = 0.
# Setup iterative solver
ffi_main, ffi_lib = chelper.get_ffi()
self.cmove = ffi_main.gc(ffi_lib.move_alloc(), ffi_lib.free)
self.extruder_move_fill = ffi_lib.extruder_move_fill
sk = ffi_main.gc(ffi_lib.extruder_stepper_alloc(), ffi_lib.free)
self.stepper.setup_itersolve(sk)
# Setup SET_PRESSURE_ADVANCE command
gcode = self.printer.lookup_object('gcode')
if self.name in ('extruder', 'extruder0'):
gcode.register_mux_command("SET_PRESSURE_ADVANCE", "EXTRUDER", None,
self.cmd_default_SET_PRESSURE_ADVANCE,
desc=self.cmd_SET_PRESSURE_ADVANCE_help)
gcode.register_mux_command("SET_PRESSURE_ADVANCE", "EXTRUDER", self.name,
self.cmd_SET_PRESSURE_ADVANCE,
desc=self.cmd_SET_PRESSURE_ADVANCE_help)
def get_heater(self):
return self.heater
def set_active(self, print_time, is_active):
return self.extrude_pos
def get_activate_gcode(self, is_active):
if is_active:
return self.activate_gcode
return self.deactivate_gcode
def stats(self, eventtime):
return self.heater.stats(eventtime)
def motor_off(self, print_time):
self.stepper.motor_enable(print_time, 0)
self.need_motor_enable = True
def check_move(self, move):
move.extrude_r = move.axes_d[3] / move.move_d
move.extrude_max_corner_v = 0.
if not self.heater.can_extrude:
raise homing.EndstopError(
"Extrude below minimum temp\n"
"See the 'min_extrude_temp' config option for details")
if not move.is_kinematic_move or move.extrude_r < 0.:
# Extrude only move (or retraction move) - limit accel and velocity
if abs(move.axes_d[3]) > self.max_e_dist:
raise homing.EndstopError(
"Extrude only move too long (%.3fmm vs %.3fmm)\n"
"See the 'max_extrude_only_distance' config"
" option for details" % (move.axes_d[3], self.max_e_dist))
inv_extrude_r = 1. / abs(move.extrude_r)
move.limit_speed(self.max_e_velocity * inv_extrude_r
, self.max_e_accel * inv_extrude_r)
elif move.extrude_r > self.max_extrude_ratio:
if move.axes_d[3] <= self.nozzle_diameter * self.max_extrude_ratio:
# Permit extrusion if amount extruded is tiny
move.extrude_r = self.max_extrude_ratio
return
area = move.axes_d[3] * self.filament_area / move.move_d
logging.debug("Overextrude: %s vs %s (area=%.3f dist=%.3f)",
move.extrude_r, self.max_extrude_ratio,
area, move.move_d)
raise homing.EndstopError(
"Move exceeds maximum extrusion (%.3fmm^2 vs %.3fmm^2)\n"
"See the 'max_extrude_cross_section' config option for details"
% (area, self.max_extrude_ratio * self.filament_area))
def calc_junction(self, prev_move, move):
extrude = move.axes_d[3]
prev_extrude = prev_move.axes_d[3]
if extrude or prev_extrude:
if not extrude or not prev_extrude:
# Extrude move to non-extrude move - disable lookahead
return 0.
if ((move.extrude_r > prev_move.extrude_r * EXTRUDE_DIFF_IGNORE
or prev_move.extrude_r > move.extrude_r * EXTRUDE_DIFF_IGNORE)
and abs(move.move_d * prev_move.extrude_r - extrude) >= .001):
# Extrude ratio between moves is too different
return 0.
move.extrude_r = prev_move.extrude_r
return move.max_cruise_v2
def lookahead(self, moves, flush_count, lazy):
lookahead_t = self.pressure_advance_lookahead_time
if not self.pressure_advance or not lookahead_t:
return flush_count
# Calculate max_corner_v - the speed the head will accelerate
# to after cornering.
for i in range(flush_count):
move = moves[i]
if not move.decel_t:
continue
cruise_v = move.cruise_v
max_corner_v = 0.
sum_t = lookahead_t
for j in range(i+1, flush_count):
fmove = moves[j]
if not fmove.max_start_v2:
break
if fmove.cruise_v > max_corner_v:
if (not max_corner_v
and not fmove.accel_t and not fmove.cruise_t):
# Start timing after any full decel moves
continue
if sum_t >= fmove.accel_t:
max_corner_v = fmove.cruise_v
else:
max_corner_v = max(
max_corner_v, fmove.start_v + fmove.accel * sum_t)
if max_corner_v >= cruise_v:
break
sum_t -= fmove.accel_t + fmove.cruise_t + fmove.decel_t
if sum_t <= 0.:
break
else:
if lazy:
return i
move.extrude_max_corner_v = max_corner_v
return flush_count
def move(self, print_time, move):
if self.need_motor_enable:
self.stepper.motor_enable(print_time, 1)
self.need_motor_enable = False
axis_d = move.axes_d[3]
axis_r = axis_d / move.move_d
accel = move.accel * axis_r
start_v = move.start_v * axis_r
cruise_v = move.cruise_v * axis_r
accel_t, cruise_t, decel_t = move.accel_t, move.cruise_t, move.decel_t
# Update for pressure advance
extra_accel_v = extra_decel_v = 0.
start_pos = self.extrude_pos
if (axis_d >= 0. and (move.axes_d[0] or move.axes_d[1])
and self.pressure_advance):
# Calculate extra_accel_v
pressure_advance = self.pressure_advance * move.extrude_r
prev_pressure_d = start_pos - move.start_pos[3]
if accel_t:
npd = move.cruise_v * pressure_advance
extra_accel_d = npd - prev_pressure_d
if extra_accel_d > 0.:
extra_accel_v = extra_accel_d / accel_t
axis_d += extra_accel_d
prev_pressure_d += extra_accel_d
# Calculate extra_decel_v
emcv = move.extrude_max_corner_v
if decel_t and emcv < move.cruise_v:
npd = max(emcv, move.end_v) * pressure_advance
extra_decel_d = npd - prev_pressure_d
if extra_decel_d < 0.:
axis_d += extra_decel_d
extra_decel_v = extra_decel_d / decel_t
# Generate steps
self.extruder_move_fill(
self.cmove, print_time, accel_t, cruise_t, decel_t, start_pos,
start_v, cruise_v, accel, extra_accel_v, extra_decel_v)
self.stepper.step_itersolve(self.cmove)
self.extrude_pos = start_pos + axis_d
cmd_SET_PRESSURE_ADVANCE_help = "Set pressure advance parameters"
def cmd_default_SET_PRESSURE_ADVANCE(self, params):
extruder = self.printer.lookup_object('toolhead').get_extruder()
extruder.cmd_SET_PRESSURE_ADVANCE(params)
def cmd_SET_PRESSURE_ADVANCE(self, params):
self.printer.lookup_object('toolhead').get_last_move_time()
gcode = self.printer.lookup_object('gcode')
pressure_advance = gcode.get_float(
'ADVANCE', params, self.pressure_advance, minval=0.)
pressure_advance_lookahead_time = gcode.get_float(
'ADVANCE_LOOKAHEAD_TIME', params,
self.pressure_advance_lookahead_time, minval=0.)
self.pressure_advance = pressure_advance
self.pressure_advance_lookahead_time = pressure_advance_lookahead_time
msg = ("pressure_advance: %.6f\n"
"pressure_advance_lookahead_time: %.6f" % (
pressure_advance, pressure_advance_lookahead_time))
self.printer.set_rollover_info(self.name, "%s: %s" % (self.name, msg))
gcode.respond_info(msg)
# Dummy extruder class used when a printer has no extruder at all
class DummyExtruder:
def set_active(self, print_time, is_active):
return 0.
def motor_off(self, move_time):
pass
def check_move(self, move):
raise homing.EndstopMoveError(
move.end_pos, "Extrude when no extruder present")
def calc_junction(self, prev_move, move):
return move.max_cruise_v2
def lookahead(self, moves, flush_count, lazy):
return flush_count
def add_printer_objects(config):
printer = config.get_printer()
for i in range(99):
section = 'extruder%d' % (i,)
if not config.has_section(section):
if not i and config.has_section('extruder'):
pe = PrinterExtruder(config.getsection('extruder'))
printer.add_object('extruder0', pe)
continue
break
printer.add_object(section, PrinterExtruder(config.getsection(section)))
def get_printer_extruders(printer):
out = []
for i in range(99):
extruder = printer.lookup_object('extruder%d' % (i,), None)
if extruder is None:
break
out.append(extruder)
return out