sam4e8e: Add the SAM4e8e port

This can be flashed to e.g. the duet wifi using bossac. It requires a
later version as is currently included in the klipper repo (1.8
vs. 1.2). Comms are currently via UART0 only, USB serial is still TBD

Signed-off-by: Florian Heilmann <Florian.Heilmann@gmx.net>
This commit is contained in:
Florian Heilmann
2018-08-07 01:03:54 +02:00
committed by Kevin O'Connor
parent d15c106288
commit 64e6d85898
16 changed files with 858 additions and 5 deletions

30
src/sam4e8e/Kconfig Normal file
View File

@@ -0,0 +1,30 @@
# Kconfig settings for SAM4e8e processors
if MACH_SAM4E8E
config SAM_SELECT
bool
default y
select HAVE_GPIO
# select HAVE_GPIO_I2C
select HAVE_GPIO_ADC
select HAVE_GPIO_SPI
select HAVE_USER_INTERFACE
config BOARD_DIRECTORY
string
default "sam4e8e"
config CLOCK_FREQ
int
default 60000000 # 120000000/2
config SERIAL
bool
default y
config SERIAL_BAUD
depends on SERIAL
int "Baud rate for serial port"
default 250000
endif

37
src/sam4e8e/Makefile Normal file
View File

@@ -0,0 +1,37 @@
# Additional sam4e8e build rules
# Setup the toolchain
CROSS_PREFIX=arm-none-eabi-
dirs-y += src/sam4e8e src/generic
CFLAGS += -mthumb -mcpu=cortex-m4 -mfpu=fpv4-sp-d16 -mfloat-abi=hard
CFLAGS += -D__SAM4E8E__
CFLAGS_klipper.elf += -L lib/cmsis-sam4e/gcc/gcc
CFLAGS_klipper.elf += -T lib/cmsis-sam4e/gcc/gcc/sam4e8e_flash.ld
CFLAGS_klipper.elf += --specs=nano.specs --specs=nosys.specs
dirs-y += lib/cmsis-sam4e/gcc \
lib/cmsis-sam4e/gcc/gcc
CFLAGS += -Ilib/cmsis-sam4e/include \
-Ilib/cmsis-core
src-y += ../lib/cmsis-sam4e/gcc/system_sam4e.c \
../lib/cmsis-sam4e/gcc/gcc/startup_sam4e.c
src-$(CONFIG_HAVE_GPIO_SPI) += sam4e8e/spi.c
src-$(CONFIG_SERIAL) += sam4e8e/serial.c generic/serial_irq.c
src-$(CONFIG_HAVE_GPIO) += sam4e8e/gpio.c
src-y += generic/crc16_ccitt.c generic/alloc.c
src-y += generic/armcm_irq.c generic/timer_irq.c
src-y += sam4e8e/main.c sam4e8e/timer.c
# Build the additional hex output file
target-y += $(OUT)klipper.bin
$(OUT)klipper.bin: $(OUT)klipper.elf
@echo " Creating bin file $@"
$(Q)$(OBJCOPY) -O binary $< $@
flash: $(OUT)klipper.bin
@echo " Flashing $^ to $(FLASH_DEVICE) via bossac"
$(Q)tools/bossa/bin/bossac --port="$(FLASH_DEVICE)" -b -U -e -w -v $(OUT)klipper.bin -R

361
src/sam4e8e/gpio.c Normal file
View File

@@ -0,0 +1,361 @@
// SAM4e8e GPIO port
//
// Copyright (C) 2018 Florian Heilmann <Florian.Heilmann@gmx.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include "gpio.h"
#include "sam4e.h"
#include "autoconf.h" // CONFIG_CLOCK_FREQ
#include "board/irq.h" // irq_save
#include "command.h" // shutdown
#include "sched.h" // sched_shutdown
#define GPIO(PORT, NUM) (((PORT)-'A') * 32 + (NUM))
#define GPIO2PORT(PIN) ((PIN) / 32)
#define GPIO2BIT(PIN) (1<<((PIN) % 32))
static Pio * const digital_regs[] = {
PIOA, PIOB, PIOC, PIOD, PIOE
};
void
gpio_set_peripheral(char bank, const uint32_t bit, char ptype, uint32_t pull_up) {
Pio *regs = digital_regs[bank - 'A'];
regs ->PIO_IDR = bit;
// Enable peripheral for pin
uint32_t sr;
switch (ptype) {
case 'A':
sr = regs->PIO_ABCDSR[0];
regs->PIO_ABCDSR[0] &= (~bit & sr);
sr = regs->PIO_ABCDSR[1];
regs->PIO_ABCDSR[1] &= (~bit & sr);
break;
case 'B':
sr = regs->PIO_ABCDSR[0];
regs->PIO_ABCDSR[0] = (bit | sr);
sr = regs->PIO_ABCDSR[1];
regs->PIO_ABCDSR[1] &= (~bit & sr);
break;
case 'C':
sr = regs->PIO_ABCDSR[0];
regs->PIO_ABCDSR[0] &= (~bit & sr);
sr = regs->PIO_ABCDSR[1];
regs->PIO_ABCDSR[1] = (bit | sr);
break;
case 'D':
sr = regs->PIO_ABCDSR[0];
regs->PIO_ABCDSR[0] = (bit | sr);
sr = regs->PIO_ABCDSR[1];
regs->PIO_ABCDSR[1] = (bit | sr);
break;
}
// Disable pin in IO controller
regs->PIO_PDR = bit;
// Set pullup
if (pull_up) {
regs->PIO_PUER = bit;
} else {
regs->PIO_PUDR = bit;
}
}
struct gpio_out
gpio_out_setup(uint8_t pin, uint8_t val)
{
if (GPIO2PORT(pin) >= ARRAY_SIZE(digital_regs))
goto fail;
Pio *regs = digital_regs[GPIO2PORT(pin)];
uint32_t bit = GPIO2BIT(pin);
uint32_t bank_id = ID_PIOA + GPIO2BIT(pin);
irqstatus_t flag = irq_save();
if ((PMC->PMC_PCSR0 & (1u << bank_id)) == 0) {
PMC->PMC_PCER0 = 1 << bank_id;
}
if (val)
regs->PIO_SODR = bit;
else
regs->PIO_CODR = bit;
regs->PIO_OER = bit;
regs->PIO_OWER = bit;
regs->PIO_PER = bit;
irq_restore(flag);
return (struct gpio_out){ .pin=pin, .regs=regs, .bit=bit };
fail:
shutdown("Not an output pin");
}
void
gpio_out_toggle_noirq(struct gpio_out g)
{
Pio *regs = g.regs;
regs->PIO_ODSR ^= g.bit;
}
void
gpio_out_toggle(struct gpio_out g)
{
irqstatus_t flag = irq_save();
gpio_out_toggle_noirq(g);
irq_restore(flag);
}
void
gpio_out_write(struct gpio_out g, uint8_t val)
{
Pio *regs = g.regs;
if (val)
regs->PIO_SODR = g.bit;
else
regs->PIO_CODR = g.bit;
}
struct gpio_in
gpio_in_setup(uint8_t pin, int8_t pull_up)
{
if (GPIO2PORT(pin) >= ARRAY_SIZE(digital_regs))
goto fail;
uint32_t port = GPIO2PORT(pin);
Pio *regs = digital_regs[port];
uint32_t bit = GPIO2BIT(pin);
regs->PIO_IDR = bit;
irqstatus_t flag = irq_save();
PMC->PMC_PCER0 = 1 << (ID_PIOA + port);
if (pull_up)
regs->PIO_PUER = bit;
else
regs->PIO_PUDR = bit;
regs->PIO_ODR = bit;
regs->PIO_PER = bit;
irq_restore(flag);
return (struct gpio_in){ .pin=pin, .regs=regs, .bit=bit };
fail:
shutdown("Not an input pin");
}
uint8_t
gpio_in_read(struct gpio_in g)
{
Pio *regs = g.regs;
return !!(regs->PIO_PDSR & g.bit);
}
/****************************************************************
* Analog Front-End Converter (AFEC) pins (see datasheet sec. 43.5)
****************************************************************/
static const uint8_t afec0_pins[] = {
//remove first channel, since it offsets the channel number: GPIO('A', 8),
GPIO('A', 17), GPIO('A', 18), GPIO('A', 19),
GPIO('A', 20), GPIO('B', 0), GPIO('B', 1), GPIO('C', 13),
GPIO('C', 15), GPIO('C', 12), GPIO('C', 29), GPIO('C', 30),
GPIO('C', 31), GPIO('C', 26), GPIO('C', 27), GPIO('C',0)
};
static const uint8_t afec1_pins[] = {
GPIO('B', 2), GPIO('B', 3), GPIO('A', 21), GPIO('A', 22),
GPIO('C', 1), GPIO('C', 2), GPIO('C', 3), GPIO('C', 4),
/* Artificially pad this array so we can safely iterate over it */
GPIO('B', 2), GPIO('B', 2), GPIO('B', 2), GPIO('B', 2),
GPIO('B', 2), GPIO('B', 2), GPIO('B', 2), GPIO('B', 2)
};
#define ADC_FREQ_MAX 6000000UL
DECL_CONSTANT(ADC_MAX, 4095);
inline struct gpio_adc
gpio_pin_to_afec(uint8_t pin)
{
int chan;
Afec* afec_device;
for (chan=0; ; chan++) {
if (chan >= ARRAY_SIZE(afec0_pins))
shutdown("Not a valid ADC pin");
if (afec0_pins[chan] == pin) {
afec_device = AFEC0;
break;
}
if (afec1_pins[chan] == pin) {
afec_device = AFEC1;
break;
}
}
return (struct gpio_adc){.pin=pin, .chan=chan, .afec=afec_device};
}
int
init_afec(Afec* afec) {
// Enable PMC
if (afec == AFEC0)
PMC->PMC_PCER0 = 1 << ID_AFEC0;
else
PMC->PMC_PCER0 = 1 << ID_AFEC1;
// If busy, return busy
if ((afec->AFE_ISR & AFE_ISR_DRDY) == AFE_ISR_DRDY) {
return -1;
}
// Reset
afec->AFE_CR = AFE_CR_SWRST;
// Configure afec
afec->AFE_MR = AFE_MR_ANACH_ALLOWED | \
AFE_MR_PRESCAL (SystemCoreClock / (2 * ADC_FREQ_MAX) -1) | \
AFE_MR_SETTLING_AST3 | \
AFE_MR_TRACKTIM(2) | \
AFE_MR_TRANSFER(1) | \
AFE_MR_STARTUP_SUT64;
afec->AFE_EMR = AFE_EMR_TAG | \
AFE_EMR_RES_NO_AVERAGE | \
AFE_EMR_STM;
afec->AFE_ACR = AFE_ACR_IBCTL(1);
// Disable interrupts
afec->AFE_IDR = 0xDF00803F;
// Disable SW triggering
uint32_t mr = afec->AFE_MR;
mr &= ~(AFE_MR_TRGSEL_Msk | AFE_MR_TRGEN | AFE_MR_FREERUN_ON);
mr |= AFE_MR_TRGEN_DIS;
afec->AFE_MR = mr;
return 0;
}
void
gpio_afec_init(void) {
while(init_afec(AFEC0) != 0) {
(void)(AFEC0->AFE_LCDR & AFE_LCDR_LDATA_Msk);
}
while(init_afec(AFEC1) != 0) {
(void)(AFEC1->AFE_LCDR & AFE_LCDR_LDATA_Msk);
}
}
DECL_INIT(gpio_afec_init);
struct gpio_adc
gpio_adc_setup(uint8_t pin)
{
struct gpio_adc adc_pin = gpio_pin_to_afec(pin);
Afec *afec = adc_pin.afec;
//config channel
uint32_t reg = afec->AFE_DIFFR;
reg &= ~(1u << adc_pin.chan);
afec->AFE_DIFFR = reg;
reg = afec->AFE_CGR;
reg &= ~(0x03u << (2 * adc_pin.chan));
reg |= 1 << (2 * adc_pin.chan);
afec->AFE_CGR = reg;
// Configure channel
// afec_ch_get_config_defaults(&ch_cfg);
// afec_ch_set_config(adc_pin.afec, adc_pin.chan, &ch_cfg);
// Remove default internal offset from channel
// See Atmel Appnote AT03078 Section 1.5
afec->AFE_CSELR = adc_pin.chan;
afec->AFE_COCR = (0x800 & AFE_COCR_AOFF_Msk);
// Enable and calibrate Channel
afec->AFE_CHER = 1 << adc_pin.chan;
reg = afec->AFE_CHSR;
afec->AFE_CDOR = reg;
afec->AFE_CR = AFE_CR_AUTOCAL;
return adc_pin;
}
enum { AFE_DUMMY=0xff };
uint8_t active_channel_afec0 = AFE_DUMMY;
uint8_t active_channel_afec1 = AFE_DUMMY;
inline uint8_t
get_active_afec_channel(Afec* afec) {
if (afec == AFEC0) {
return active_channel_afec0;
}
return active_channel_afec1;
}
inline void
set_active_afec_channel(Afec* afec, uint8_t chan) {
if (afec == AFEC0) {
active_channel_afec0 = chan;
} else {
active_channel_afec1 = chan;
}
}
// Try to sample a value. Returns zero if sample ready, otherwise
// returns the number of clock ticks the caller should wait before
// retrying this function.
uint32_t
gpio_adc_sample(struct gpio_adc g)
{
Afec* afec = g.afec;
if (get_active_afec_channel(afec) == g.chan) {
if ((afec->AFE_ISR & AFE_ISR_DRDY) && (afec->AFE_ISR & (1 << g.chan))) {
// Sample now ready
return 0;
} else {
// Busy
goto need_delay;
}
} else if (get_active_afec_channel(g.afec) != AFE_DUMMY) {
goto need_delay;
}
afec->AFE_CHDR = 0x803F; // Disable all channels
afec->AFE_CHER = 1 << g.chan;
set_active_afec_channel(afec, g.chan);
for (uint32_t chan = 0; chan < 16; ++chan)
{
if ((afec->AFE_ISR & (1 << chan)) != 0)
{
afec->AFE_CSELR = chan;
(void)(afec->AFE_CDR);
}
}
afec->AFE_CR = AFE_CR_START;
need_delay:
return ADC_FREQ_MAX * 10000ULL / CONFIG_CLOCK_FREQ; // about 400 mcu clock cycles or 40 afec cycles
}
// Read a value; use only after gpio_adc_sample() returns zero
uint16_t
gpio_adc_read(struct gpio_adc g)
{
Afec *afec = g.afec;
set_active_afec_channel(g.afec, AFE_DUMMY);
afec->AFE_CSELR = g.chan;
return afec->AFE_CDR;
}
// Cancel a sample that may have been started with gpio_adc_sample()
void
gpio_adc_cancel_sample(struct gpio_adc g)
{
if (get_active_afec_channel(g.afec) == g.chan) {
set_active_afec_channel(g.afec, AFE_DUMMY);
}
}

47
src/sam4e8e/gpio.h Normal file
View File

@@ -0,0 +1,47 @@
#ifndef __SAM4E8E_GPIO_H
#define __SAM4E8E_GPIO_H
#include <stdint.h>
struct gpio_out {
uint8_t pin;
void *regs;
uint32_t bit;
};
void gpio_set_peripheral(char bank, uint32_t bit, char ptype, uint32_t pull_up);
struct gpio_out gpio_out_setup(uint8_t pin, uint8_t val);
void gpio_out_toggle_noirq(struct gpio_out g);
void gpio_out_toggle(struct gpio_out g);
void gpio_out_write(struct gpio_out g, uint8_t val);
struct gpio_in {
uint8_t pin;
void *regs;
uint32_t bit;
};
struct gpio_adc {
uint8_t pin;
void *afec;
uint32_t chan;
};
struct gpio_in gpio_in_setup(uint8_t pin, int8_t pull_up);
uint8_t gpio_in_read(struct gpio_in g);
struct gpio_adc gpio_pin_to_afec(uint8_t pin);
struct gpio_adc gpio_adc_setup(uint8_t pin);
uint32_t gpio_adc_sample(struct gpio_adc g);
uint16_t gpio_adc_read(struct gpio_adc g);
void gpio_adc_cancel_sample(struct gpio_adc g);
struct spi_config {
void *sspi;
uint32_t cfg;
};
struct spi_config spi_setup(uint32_t bus, uint8_t mode, uint32_t rate);
void spi_transfer(struct spi_config config, uint8_t receive_data
, uint8_t len, uint8_t *data);
void spi_prepare(struct spi_config config);
#endif // gpio.h

48
src/sam4e8e/main.c Normal file
View File

@@ -0,0 +1,48 @@
// SAM4e8e port main entry
//
// Copyright (C) 2018 Florian Heilmann <Florian.Heilmann@gmx.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
// CMSIS
#include "sam.h"
// Klipper
#include "command.h" // DECL_CONSTANT
#include "sched.h" // sched_main
DECL_CONSTANT(MCU, "sam4e8e");
#define WDT_PASSWORD 0xA5000000
#define WDT_SLOW_CLOCK_DIV 128
void
watchdog_reset(void)
{
WDT->WDT_CR = WDT_PASSWORD | WDT_CR_WDRSTT;
}
DECL_TASK(watchdog_reset);
void
watchdog_init(void)
{
uint32_t timeout = 500000 / (WDT_SLOW_CLOCK_DIV * 1000000 / 32768UL);
WDT->WDT_MR = WDT_MR_WDRSTEN | WDT_MR_WDV(timeout) | WDT_MR_WDD(timeout);
}
DECL_INIT(watchdog_init);
void
command_reset(uint32_t *args)
{
NVIC_SystemReset();
}
DECL_COMMAND_FLAGS(command_reset, HF_IN_SHUTDOWN, "reset");
// Main entry point
int
main(void)
{
SystemInit();
sched_main();
return 0;
}

59
src/sam4e8e/serial.c Normal file
View File

@@ -0,0 +1,59 @@
// SAM4e8e serial port
//
// Copyright (C) 2018 Florian Heilmann <Florian.Heilmann@gmx.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
// CMSIS
#include "sam.h" // UART
// Klipper
#include "autoconf.h" // CONFIG_SERIAL_BAUD
#include "board/gpio.h" // gpio_peripheral
#include "board/serial_irq.h" // serial_rx_data
#include "sched.h" // DECL_INIT
void
serial_init(void)
{
gpio_set_peripheral('A', PIO_PA9A_URXD0, 'A', 1);
gpio_set_peripheral('A', PIO_PA10A_UTXD0, 'A', 0);
// Reset uart
PMC->PMC_PCER0 = 1 << ID_UART0;
UART0->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS;
UART0->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS;
UART0->UART_IDR = 0xFFFFFFFF;
// Enable uart
UART0->UART_MR = (US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO
| UART_MR_CHMODE_NORMAL);
UART0->UART_BRGR = SystemCoreClock / (16 * CONFIG_SERIAL_BAUD);
UART0->UART_IER = UART_IER_RXRDY;
NVIC_EnableIRQ(UART0_IRQn);
NVIC_SetPriority(UART0_IRQn, 0);
UART0->UART_CR = UART_CR_RXEN | UART_CR_TXEN;
}
DECL_INIT(serial_init);
void __visible
UART0_Handler(void)
{
uint32_t status = UART0->UART_SR;
if (status & UART_SR_RXRDY)
serial_rx_byte(UART0->UART_RHR);
if (status & UART_SR_TXRDY) {
uint8_t data;
int ret = serial_get_tx_byte(&data);
if (ret)
UART0->UART_IDR = UART_IDR_TXRDY;
else
UART0->UART_THR = data;
}
}
void
serial_enable_tx_irq(void)
{
UART0->UART_IER = UART_IDR_TXRDY;
}

126
src/sam4e8e/spi.c Normal file
View File

@@ -0,0 +1,126 @@
// SAM4e8e SPI port
//
// Copyright (C) 2018 Florian Heilmann <Florian.Heilmann@gmx.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
// Klipper
#include "command.h" // shutdown
#include "sched.h"
#include "autoconf.h" // CONFIG_CLOCK_FREQ
// SAM4E port
#include "sam.h"
#include "gpio.h"
#define SSPI_USART0 0
#define SSPI_USART1 1
#define SSPI_SPI 2
struct spi_config
spi_setup(uint32_t bus, uint8_t mode, uint32_t rate)
{
Usart *p_usart = USART0;
if (bus > 2 || mode > 3) {
shutdown("Invalid spi_setup parameters");
}
if (bus == SSPI_USART0) {
// DUET_USART0_SCK as per dc42 CoreNG
gpio_set_peripheral('B', PIO_PB13C_SCK0, 'C', 0);
// DUET_USART0_MOSI as per dc42 CoreNG
gpio_set_peripheral('B', PIO_PB1C_TXD0, 'C', 0);
// DUET_USART0_MISO as per dc42 CoreNG
gpio_set_peripheral('B', PIO_PB0C_RXD0, 'C', 1);
if ((PMC->PMC_PCSR0 & (1u << ID_USART0)) == 0) {
PMC->PMC_PCER0 = 1 << ID_USART0;
}
p_usart = USART0;
} else if (bus == SSPI_USART1) {
// DUET_USART1_SCK as per dc42 CoreNG
gpio_set_peripheral('A', PIO_PA23A_SCK1, 'A', 0);
// DUET_USART1_MOSI as per dc42 CoreNG
gpio_set_peripheral('A', PIO_PA22A_TXD1, 'A', 0);
// DUET_USART1_MISO as per dc42 CoreNG
gpio_set_peripheral('A', PIO_PA21A_RXD1, 'A', 1);
if ((PMC->PMC_PCSR0 & (1u << ID_USART1)) == 0) {
PMC->PMC_PCER0 = 1 << ID_USART1;
}
p_usart = USART1;
}
if (bus < 2) {
p_usart->US_MR = 0;
p_usart->US_RTOR = 0;
p_usart->US_TTGR = 0;
p_usart->US_CR = US_CR_RSTTX | US_CR_RSTRX | US_CR_TXDIS | US_CR_RXDIS;
uint32_t br = (CONFIG_CLOCK_FREQ + rate / 2) / rate;
p_usart-> US_BRGR = br << US_BRGR_CD_Pos;
uint32_t reg = US_MR_CHRL_8_BIT |
US_MR_USART_MODE_SPI_MASTER |
US_MR_CLKO |
US_MR_CHMODE_NORMAL;
switch (mode) {
case 0:
reg |= US_MR_CPHA;
reg &= ~US_MR_CPOL;
break;
case 1:
reg &= ~US_MR_CPHA;
reg &= ~US_MR_CPOL;
break;
case 2:
reg |= US_MR_CPHA;
reg |= US_MR_CPOL;
break;
case 3:
reg &= ~US_MR_CPHA;
reg |= US_MR_CPOL;
break;
}
p_usart->US_MR |= reg;
p_usart->US_CR = US_CR_RXEN | US_CR_TXEN;
return (struct spi_config){ .sspi=p_usart, .cfg=p_usart->US_MR };
}
// True SPI implementation still ToDo
return (struct spi_config){ .sspi = 0, .cfg=0};
}
void
spi_transfer(struct spi_config config, uint8_t receive_data
, uint8_t len, uint8_t *data)
{
if ((config.sspi == USART0) || (config.sspi == USART1)) {
Usart *p_usart = config.sspi;
if (receive_data) {
for (uint32_t i = 0; i < len; ++i) {
uint32_t co = (uint32_t)*data & 0x000000FF;
while(!(p_usart->US_CSR & US_CSR_TXRDY)) {}
p_usart->US_THR = US_THR_TXCHR(co);
uint32_t ci = 0;
while(!(p_usart->US_CSR & US_CSR_RXRDY)) {}
ci = p_usart->US_RHR & US_RHR_RXCHR_Msk;
*data++ = (uint8_t)ci;
}
} else {
for (uint32_t i = 0; i < len; ++i) {
uint32_t co = (uint32_t)*data & 0x000000FF;
while(!(p_usart->US_CSR & US_CSR_TXRDY)) {}
p_usart->US_THR = US_THR_TXCHR(co);
while(!(p_usart->US_CSR & US_CSR_RXRDY)) {}
(void)(p_usart->US_RHR & US_RHR_RXCHR_Msk);
(void)*data++;
}
}
}
}
void
spi_prepare(struct spi_config config) {}

67
src/sam4e8e/timer.c Normal file
View File

@@ -0,0 +1,67 @@
// SAM4e8e timer port
//
// Copyright (C) 2018 Florian Heilmann <Florian.Heilmann@gmx.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
// CMSIS
#include "sam.h"
// Klipper
#include "board/irq.h" // irq_disable
#include "board/misc.h" // timer_read_time
#include "board/timer_irq.h" // timer_dispatch_many
#include "sched.h" // DECL_INIT
// Set the next irq time
static void
timer_set(uint32_t value)
{
TC0->TC_CHANNEL[0].TC_RA = value;
}
// Return the current time (in absolute clock ticks).
uint32_t
timer_read_time(void)
{
return TC0->TC_CHANNEL[0].TC_CV;
}
// Activate timer dispatch as soon as possible
void
timer_kick(void)
{
timer_set(timer_read_time() + 50);
TC0->TC_CHANNEL[0].TC_SR;
}
void
timer_init(void)
{
if ((PMC->PMC_PCSR0 & (1u << ID_TC0)) == 0) {
PMC->PMC_PCER0 = 1 << ID_TC0;
}
TcChannel *tc_channel = &TC0->TC_CHANNEL[0];
tc_channel->TC_CCR = TC_CCR_CLKDIS;
tc_channel->TC_IDR = 0xFFFFFFFF;
tc_channel->TC_SR;
tc_channel->TC_CMR = TC_CMR_WAVE | TC_CMR_WAVSEL_UP | TC_CMR_TCCLKS_TIMER_CLOCK1;
tc_channel->TC_IER = TC_IER_CPAS;
NVIC_SetPriority(TC0_IRQn, 1);
NVIC_EnableIRQ(TC0_IRQn);
timer_kick();
tc_channel->TC_CCR = TC_CCR_CLKEN | TC_CCR_SWTRG;
}
DECL_INIT(timer_init);
// IRQ handler
void __visible __aligned(16) // aligning helps stabilize perf benchmarks
TC0_Handler(void)
{
irq_disable();
uint32_t status = TC0->TC_CHANNEL[0].TC_SR;
if (likely(status & TC_SR_CPAS)) {
uint32_t next = timer_dispatch_many();
timer_set(next);
}
irq_enable();
}