stepcompress: Propagate errors back to python code

Propagate error codes back to the python code and raise an exception
on an error.

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor
2017-02-06 11:37:03 -05:00
parent 667b72870f
commit 19ed67331d
3 changed files with 146 additions and 80 deletions

View File

@@ -31,8 +31,6 @@ struct stepcompress {
uint64_t *queue, *queue_end, *queue_pos, *queue_next;
// Internal tracking
uint32_t max_error;
// Error checking
uint32_t errors;
// Message generation
uint64_t last_step_clock, homing_clock;
struct list_head msg_queue;
@@ -224,27 +222,28 @@ compress_bisect_add(struct stepcompress *sc)
* Step compress checking
****************************************************************/
#define ERROR_RET -989898989
// Verify that a given 'step_move' matches the actual step times
static void
static int
check_line(struct stepcompress *sc, struct step_move move)
{
if (!CHECK_LINES)
return;
return 0;
if (move.count == 1) {
if (move.interval != (uint32_t)(*sc->queue_pos - sc->last_step_clock)
|| *sc->queue_pos < sc->last_step_clock) {
errorf("Count 1 point out of range: %d %d %d"
, move.interval, move.count, move.add);
sc->errors++;
return ERROR_RET;
}
return;
return 0;
}
int err = 0;
if (!move.count || (!move.interval && !move.add)
|| move.interval >= 0x80000000) {
errorf("Point out of range: %d %d %d"
, move.interval, move.count, move.add);
err++;
return ERROR_RET;
}
uint32_t interval = move.interval, p = 0;
uint16_t i;
@@ -254,16 +253,16 @@ check_line(struct stepcompress *sc, struct step_move move)
if (p < point.minp || p > point.maxp) {
errorf("Point %d of %d: %d not in %d:%d"
, i+1, move.count, p, point.minp, point.maxp);
err++;
return ERROR_RET;
}
if (interval >= 0x80000000) {
errorf("Point %d of %d: interval overflow %d"
, i+1, move.count, interval);
err++;
return ERROR_RET;
}
interval += move.add;
}
sc->errors += err;
return 0;
}
@@ -317,14 +316,16 @@ stepcompress_free(struct stepcompress *sc)
}
// Convert previously scheduled steps into commands for the mcu
static void
static int
stepcompress_flush(struct stepcompress *sc, uint64_t move_clock)
{
if (sc->queue_pos >= sc->queue_next)
return;
return 0;
while (move_clock > sc->last_step_clock) {
struct step_move move = compress_bisect_add(sc);
check_line(sc, move);
int ret = check_line(sc, move);
if (ret)
return ret;
uint32_t msg[5] = {
sc->queue_step_msgid, sc->oid, move.interval, move.count, move.add
@@ -350,54 +351,70 @@ stepcompress_flush(struct stepcompress *sc, uint64_t move_clock)
}
sc->queue_pos += move.count;
}
return 0;
}
// Send the set_next_step_dir command
static void
static int
set_next_step_dir(struct stepcompress *sc, int sdir)
{
if (sc->sdir == sdir)
return;
return 0;
sc->sdir = sdir;
stepcompress_flush(sc, UINT64_MAX);
int ret = stepcompress_flush(sc, UINT64_MAX);
if (ret)
return ret;
uint32_t msg[3] = {
sc->set_next_step_dir_msgid, sc->oid, sdir ^ sc->invert_sdir
};
struct queue_message *qm = message_alloc_and_encode(msg, 3);
qm->req_clock = sc->homing_clock ?: sc->last_step_clock;
list_add_tail(&qm->node, &sc->msg_queue);
return 0;
}
// Check if the internal queue needs to be expanded, and expand if so
static void
static int
_check_expand(struct stepcompress *sc, uint64_t *qn)
{
sc->queue_next = qn;
if (qn - sc->queue_pos > 65535 + 2000)
if (qn - sc->queue_pos > 65535 + 2000) {
// No point in keeping more than 64K steps in memory
stepcompress_flush(sc, *(qn - 65535));
int ret = stepcompress_flush(sc, *(qn - 65535));
if (ret)
return ret;
}
expand_queue(sc, 1);
return 0;
}
static inline void
static inline int
check_expand(struct stepcompress *sc, uint64_t **pqn, uint64_t **pqend)
{
if (likely(*pqn < *pqend))
return;
_check_expand(sc, *pqn);
return 0;
int ret = _check_expand(sc, *pqn);
if (ret)
return ret;
*pqn = sc->queue_next;
*pqend = sc->queue_end;
return 0;
}
// Schedule a step event at the specified step_clock time
void
int
stepcompress_push(struct stepcompress *sc, double step_clock, int32_t sdir)
{
set_next_step_dir(sc, !!sdir);
int ret = set_next_step_dir(sc, !!sdir);
if (ret)
return ret;
step_clock += 0.5;
uint64_t *qn = sc->queue_next, *qend = sc->queue_end;
check_expand(sc, &qn, &qend);
ret = check_expand(sc, &qn, &qend);
if (ret)
return ret;
*qn++ = step_clock;
sc->queue_next = qn;
return 0;
}
// Schedule 'steps' number of steps with a constant time between steps
@@ -416,12 +433,16 @@ stepcompress_push_factor(struct stepcompress *sc
}
int count = steps + .5 - step_offset;
if (count <= 0 || count > 10000000) {
if (count && steps)
if (count && steps) {
errorf("push_factor invalid count %d %f %f %f %f"
, sc->oid, steps, step_offset, clock_offset, factor);
return ERROR_RET;
}
return 0;
}
set_next_step_dir(sc, sdir);
int ret = set_next_step_dir(sc, sdir);
if (ret)
return ret;
int res = sdir ? count : -count;
// Calculate each step time
@@ -429,7 +450,9 @@ stepcompress_push_factor(struct stepcompress *sc
double pos = step_offset + .5;
uint64_t *qn = sc->queue_next, *qend = sc->queue_end;
while (count--) {
check_expand(sc, &qn, &qend);
int ret = check_expand(sc, &qn, &qend);
if (ret)
return ret;
*qn++ = clock_offset + pos*factor;
pos += 1.0;
}
@@ -452,13 +475,17 @@ stepcompress_push_sqrt(struct stepcompress *sc, double steps, double step_offset
}
int count = steps + .5 - step_offset;
if (count <= 0 || count > 10000000) {
if (count && steps)
if (count && steps) {
errorf("push_sqrt invalid count %d %f %f %f %f %f"
, sc->oid, steps, step_offset, clock_offset, sqrt_offset
, factor);
return ERROR_RET;
}
return 0;
}
set_next_step_dir(sc, sdir);
int ret = set_next_step_dir(sc, sdir);
if (ret)
return ret;
int res = sdir ? count : -count;
// Calculate each step time
@@ -466,7 +493,9 @@ stepcompress_push_sqrt(struct stepcompress *sc, double steps, double step_offset
double pos = step_offset + .5 + sqrt_offset/factor;
uint64_t *qn = sc->queue_next, *qend = sc->queue_end;
while (count--) {
check_expand(sc, &qn, &qend);
int ret = check_expand(sc, &qn, &qend);
if (ret)
return ret;
double v = safe_sqrt(pos*factor);
*qn++ = clock_offset + (factor >= 0. ? v : -v);
pos += 1.0;
@@ -488,13 +517,17 @@ stepcompress_push_delta_const(
double end_height = safe_sqrt(closest_height2 - reldist*reldist);
int count = (end_height - height + movez_r*dist) / step_dist + .5;
if (count <= 0 || count > 10000000) {
if (count)
if (count) {
errorf("push_delta_const invalid count %d %d %f %f %f %f %f %f %f %f"
, sc->oid, count, clock_offset, dist, step_dist, start_pos
, closest_height2, height, movez_r, inv_velocity);
return ERROR_RET;
}
return 0;
}
set_next_step_dir(sc, step_dist > 0.);
int ret = set_next_step_dir(sc, step_dist > 0.);
if (ret)
return ret;
int res = step_dist > 0. ? count : -count;
// Calculate each step time
@@ -505,7 +538,9 @@ stepcompress_push_delta_const(
if (!movez_r) {
// Optmized case for common XY only moves (no Z movement)
while (count--) {
check_expand(sc, &qn, &qend);
int ret = check_expand(sc, &qn, &qend);
if (ret)
return ret;
double v = safe_sqrt(closest_height2 - height*height);
double pos = start_pos + (step_dist > 0. ? -v : v);
*qn++ = clock_offset + pos * inv_velocity;
@@ -515,7 +550,9 @@ stepcompress_push_delta_const(
// Optmized case for Z only moves
double v = (step_dist > 0. ? -end_height : end_height);
while (count--) {
check_expand(sc, &qn, &qend);
int ret = check_expand(sc, &qn, &qend);
if (ret)
return ret;
double pos = start_pos + movez_r*height + v;
*qn++ = clock_offset + pos * inv_velocity;
height += step_dist;
@@ -523,7 +560,9 @@ stepcompress_push_delta_const(
} else {
// General case (handles XY+Z moves)
while (count--) {
check_expand(sc, &qn, &qend);
int ret = check_expand(sc, &qn, &qend);
if (ret)
return ret;
double relheight = movexy_r*height - movez_r*closestxy_d;
double v = safe_sqrt(closest_height2 - relheight*relheight);
double pos = start_pos + movez_r*height + (step_dist > 0. ? -v : v);
@@ -548,13 +587,17 @@ stepcompress_push_delta_accel(
double end_height = safe_sqrt(closest_height2 - reldist*reldist);
int count = (end_height - height + movez_r*dist) / step_dist + .5;
if (count <= 0 || count > 10000000) {
if (count)
if (count) {
errorf("push_delta_accel invalid count %d %d %f %f %f %f %f %f %f %f"
, sc->oid, count, clock_offset, dist, step_dist, start_pos
, closest_height2, height, movez_r, accel_multiplier);
return ERROR_RET;
}
return 0;
}
set_next_step_dir(sc, step_dist > 0.);
int ret = set_next_step_dir(sc, step_dist > 0.);
if (ret)
return ret;
int res = step_dist > 0. ? count : -count;
// Calculate each step time
@@ -563,7 +606,9 @@ stepcompress_push_delta_accel(
height += .5 * step_dist;
uint64_t *qn = sc->queue_next, *qend = sc->queue_end;
while (count--) {
check_expand(sc, &qn, &qend);
int ret = check_expand(sc, &qn, &qend);
if (ret)
return ret;
double relheight = movexy_r*height - movez_r*closestxy_d;
double v = safe_sqrt(closest_height2 - relheight*relheight);
double pos = start_pos + movez_r*height + (step_dist > 0. ? -v : v);
@@ -576,38 +621,40 @@ stepcompress_push_delta_accel(
}
// Reset the internal state of the stepcompress object
void
int
stepcompress_reset(struct stepcompress *sc, uint64_t last_step_clock)
{
stepcompress_flush(sc, UINT64_MAX);
int ret = stepcompress_flush(sc, UINT64_MAX);
if (ret)
return ret;
sc->last_step_clock = last_step_clock;
sc->sdir = -1;
return 0;
}
// Indicate the stepper is in homing mode (or done homing if zero)
void
int
stepcompress_set_homing(struct stepcompress *sc, uint64_t homing_clock)
{
stepcompress_flush(sc, UINT64_MAX);
int ret = stepcompress_flush(sc, UINT64_MAX);
if (ret)
return ret;
sc->homing_clock = homing_clock;
return 0;
}
// Queue an mcu command to go out in order with stepper commands
void
int
stepcompress_queue_msg(struct stepcompress *sc, uint32_t *data, int len)
{
stepcompress_flush(sc, UINT64_MAX);
int ret = stepcompress_flush(sc, UINT64_MAX);
if (ret)
return ret;
struct queue_message *qm = message_alloc_and_encode(data, len);
qm->req_clock = sc->homing_clock ?: sc->last_step_clock;
list_add_tail(&qm->node, &sc->msg_queue);
}
// Return the count of internal errors found
uint32_t
stepcompress_get_errors(struct stepcompress *sc)
{
return sc->errors;
return 0;
}
@@ -693,13 +740,16 @@ heap_replace(struct steppersync *ss, uint64_t req_clock)
}
// Find and transmit any scheduled steps prior to the given 'move_clock'
void
int
steppersync_flush(struct steppersync *ss, uint64_t move_clock)
{
// Flush each stepcompress to the specified move_clock
int i;
for (i=0; i<ss->sc_num; i++)
stepcompress_flush(ss->sc_list[i], move_clock);
for (i=0; i<ss->sc_num; i++) {
int ret = stepcompress_flush(ss->sc_list[i], move_clock);
if (ret)
return ret;
}
// Order commands by the reqclock of each pending command
struct list_head msgs;
@@ -739,4 +789,5 @@ steppersync_flush(struct steppersync *ss, uint64_t move_clock)
// Transmit commands
if (!list_empty(&msgs))
serialqueue_send_batch(ss->sq, ss->cq, &msgs);
return 0;
}