244 lines
6.6 KiB
C++
244 lines
6.6 KiB
C++
/*
|
|
Mahony AHRS algorithm implemented by Madgwick
|
|
See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
|
|
|
|
Adapted by Igor Vereninov (igor.vereninov@emlid.com)
|
|
Provided to you by Emlid Ltd (c) 2014.
|
|
twitter.com/emlidtech || www.emlid.com || info@emlid.com
|
|
*/
|
|
|
|
#ifndef AHRS_HPP
|
|
#define AHRS_HPP
|
|
|
|
#include <cmath>
|
|
#include <stdio.h>
|
|
|
|
class AHRS{
|
|
private:
|
|
float q0, q1, q2, q3;
|
|
float gyroOffset[3];
|
|
float twoKi;
|
|
float twoKp;
|
|
float integralFBx, integralFBy, integralFBz;
|
|
public:
|
|
AHRS(float q0 = 1, float q1 = 0, float q2 = 0, float q3 = 0)
|
|
: q0(q0), q1(q1), q2(q2), q3(q3), twoKi(0), twoKp(2) {;}
|
|
|
|
void update(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float dt)
|
|
{
|
|
float recipNorm;
|
|
float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
|
|
float hx, hy, bx, bz;
|
|
float halfvx, halfvy, halfvz, halfwx, halfwy, halfwz;
|
|
float halfex, halfey, halfez;
|
|
float qa, qb, qc;
|
|
|
|
// Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
|
|
if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
|
|
updateIMU(gx, gy, gz, ax, ay, az, dt);
|
|
return;
|
|
}
|
|
|
|
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
|
|
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
|
|
|
|
// Normalise accelerometer measurement
|
|
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
|
|
ax *= recipNorm;
|
|
ay *= recipNorm;
|
|
az *= recipNorm;
|
|
|
|
// Normalise magnetometer measurement
|
|
recipNorm = invSqrt(mx * mx + my * my + mz * mz);
|
|
mx *= recipNorm;
|
|
my *= recipNorm;
|
|
mz *= recipNorm;
|
|
|
|
// Auxiliary variables to avoid repeated arithmetic
|
|
q0q0 = q0 * q0;
|
|
q0q1 = q0 * q1;
|
|
q0q2 = q0 * q2;
|
|
q0q3 = q0 * q3;
|
|
q1q1 = q1 * q1;
|
|
q1q2 = q1 * q2;
|
|
q1q3 = q1 * q3;
|
|
q2q2 = q2 * q2;
|
|
q2q3 = q2 * q3;
|
|
q3q3 = q3 * q3;
|
|
|
|
// Reference direction of Earth's magnetic field
|
|
hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2));
|
|
hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1));
|
|
bx = sqrt(hx * hx + hy * hy);
|
|
bz = 2.0f * (mx * (q1q3 - q0q2) + my * (q2q3 + q0q1) + mz * (0.5f - q1q1 - q2q2));
|
|
|
|
// Estimated direction of gravity and magnetic field
|
|
halfvx = q1q3 - q0q2;
|
|
halfvy = q0q1 + q2q3;
|
|
halfvz = q0q0 - 0.5f + q3q3;
|
|
halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2);
|
|
halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3);
|
|
halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2);
|
|
|
|
// Error is sum of cross product between estimated direction and measured direction of field vectors
|
|
halfex = (ay * halfvz - az * halfvy) + (my * halfwz - mz * halfwy);
|
|
halfey = (az * halfvx - ax * halfvz) + (mz * halfwx - mx * halfwz);
|
|
halfez = (ax * halfvy - ay * halfvx) + (mx * halfwy - my * halfwx);
|
|
|
|
// Compute and apply integral feedback if enabled
|
|
if(twoKi > 0.0f) {
|
|
integralFBx += twoKi * halfex * dt; // integral error scaled by Ki
|
|
integralFBy += twoKi * halfey * dt;
|
|
integralFBz += twoKi * halfez * dt;
|
|
gx += integralFBx; // apply integral feedback
|
|
gy += integralFBy;
|
|
gz += integralFBz;
|
|
}
|
|
else {
|
|
integralFBx = 0.0f; // prevent integral windup
|
|
integralFBy = 0.0f;
|
|
integralFBz = 0.0f;
|
|
}
|
|
|
|
// Apply proportional feedback
|
|
gx += twoKp * halfex;
|
|
gy += twoKp * halfey;
|
|
gz += twoKp * halfez;
|
|
}
|
|
|
|
// Integrate rate of change of quaternion
|
|
gx *= (0.5f * dt); // pre-multiply common factors
|
|
gy *= (0.5f * dt);
|
|
gz *= (0.5f * dt);
|
|
qa = q0;
|
|
qb = q1;
|
|
qc = q2;
|
|
q0 += (-qb * gx - qc * gy - q3 * gz);
|
|
q1 += (qa * gx + qc * gz - q3 * gy);
|
|
q2 += (qa * gy - qb * gz + q3 * gx);
|
|
q3 += (qa * gz + qb * gy - qc * gx);
|
|
|
|
// Normalise quaternion
|
|
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
|
|
q0 *= recipNorm;
|
|
q1 *= recipNorm;
|
|
q2 *= recipNorm;
|
|
q3 *= recipNorm;
|
|
}
|
|
|
|
void updateIMU(float ax, float ay, float az, float gx, float gy, float gz, float dt)
|
|
{
|
|
float recipNorm;
|
|
float halfvx, halfvy, halfvz;
|
|
float halfex, halfey, halfez;
|
|
float qa, qb, qc;
|
|
|
|
gx -= gyroOffset[0];
|
|
gy -= gyroOffset[1];
|
|
gz -= gyroOffset[2];
|
|
|
|
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
|
|
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
|
|
|
|
// Normalise accelerometer measurement
|
|
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
|
|
ax *= recipNorm;
|
|
ay *= recipNorm;
|
|
az *= recipNorm;
|
|
|
|
// Estimated direction of gravity and vector perpendicular to magnetic flux
|
|
halfvx = q1 * q3 - q0 * q2;
|
|
halfvy = q0 * q1 + q2 * q3;
|
|
halfvz = q0 * q0 - 0.5f + q3 * q3;
|
|
|
|
// Error is sum of cross product between estimated and measured direction of gravity
|
|
halfex = (ay * halfvz - az * halfvy);
|
|
halfey = (az * halfvx - ax * halfvz);
|
|
halfez = (ax * halfvy - ay * halfvx);
|
|
|
|
// Compute and apply integral feedback if enabled
|
|
if(twoKi > 0.0f) {
|
|
integralFBx += twoKi * halfex * dt; // integral error scaled by Ki
|
|
integralFBy += twoKi * halfey * dt;
|
|
integralFBz += twoKi * halfez * dt;
|
|
gx += integralFBx; // apply integral feedback
|
|
gy += integralFBy;
|
|
gz += integralFBz;
|
|
}
|
|
else {
|
|
integralFBx = 0.0f; // prevent integral windup
|
|
integralFBy = 0.0f;
|
|
integralFBz = 0.0f;
|
|
}
|
|
|
|
// Apply proportional feedback
|
|
gx += twoKp * halfex;
|
|
gy += twoKp * halfey;
|
|
gz += twoKp * halfez;
|
|
}
|
|
|
|
// Integrate rate of change of quaternion
|
|
gx *= (0.5f * dt); // pre-multiply common factors
|
|
gy *= (0.5f * dt);
|
|
gz *= (0.5f * dt);
|
|
qa = q0;
|
|
qb = q1;
|
|
qc = q2;
|
|
q0 += (-qb * gx - qc * gy - q3 * gz);
|
|
q1 += (qa * gx + qc * gz - q3 * gy);
|
|
q2 += (qa * gy - qb * gz + q3 * gx);
|
|
q3 += (qa * gz + qb * gy - qc * gx);
|
|
|
|
// Normalise quaternion
|
|
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
|
|
q0 *= recipNorm;
|
|
q1 *= recipNorm;
|
|
q2 *= recipNorm;
|
|
q3 *= recipNorm;
|
|
}
|
|
|
|
void setGyroOffset(float offsetX, float offsetY, float offsetZ)
|
|
{
|
|
gyroOffset[0] = offsetX;
|
|
gyroOffset[1] = offsetY;
|
|
gyroOffset[2] = offsetZ;
|
|
}
|
|
|
|
void getEuler(float* roll, float* pitch, float* yaw)
|
|
{
|
|
*roll = atan2(2*(q0*q1+q2*q3), 1-2*(q1*q1+q2*q2)) * 180.0/M_PI;
|
|
*pitch = asin(2*(q0*q2-q3*q1)) * 180.0/M_PI;
|
|
*yaw = atan2(2*(q0*q3+q1*q2), 1-2*(q2*q2+q3*q3)) * 180.0/M_PI;
|
|
}
|
|
|
|
float invSqrt(float x)
|
|
{
|
|
float halfx = 0.5f * x;
|
|
float y = x;
|
|
long i = *(long*)&y;
|
|
i = 0x5f3759df - (i>>1);
|
|
y = *(float*)&i;
|
|
y = y * (1.5f - (halfx * y * y));
|
|
return y;
|
|
}
|
|
float getW()
|
|
{
|
|
return q0;
|
|
}
|
|
float getX()
|
|
{
|
|
return q1;
|
|
}
|
|
float getY()
|
|
{
|
|
return q2;
|
|
}
|
|
float getZ()
|
|
{
|
|
return q3;
|
|
}
|
|
|
|
};
|
|
|
|
#endif // AHRS_hpp
|